通过StyleGAN实现图像编辑

GAN反演与图像编辑新方法:Warping the Residuals for Image Editing with StyleGAN 背景与研究问题 生成对抗网络(Generative Adversarial Networks, GANs)在图像生成领域取得了显著的进展,为高质量图像的合成和编辑提供了可能性。StyleGAN模型以其语义可解释的潜在空间组织,展现了超越传统图像翻译方法的编辑能力。然而,GAN的实际应用面临一个核心挑战:在真实图像编辑中,需要将图像逆向投影到GAN的潜在空间(即GAN反演),实现对原始图像的高保真重建以及高质量的编辑。 现有方法中,低比特率潜在空间(如StyleGAN的$W^+$空间)在编辑上表现较佳,但由于信息瓶颈问题,往往丢失图像细节;而高比特率潜在空间虽...

基于Transformer的对象再识别综述

Transformer for Object Re-Identification: A Survey 背景与研究意义 对象重新识别(Object Re-Identification,简称Re-ID)是一项重要的计算机视觉任务,旨在跨时间和场景识别特定对象。这一领域在深度学习技术的推动下取得了显著进展,尤其是基于卷积神经网络(Convolutional Neural Networks,简称CNNs)的研究。然而,随着视觉Transformer的出现,Re-ID研究开启了新的篇章。本文综述了基于Transformer的Re-ID技术,分析其在图像/视频、少数据/少标注、多模态及特殊应用场景中的优势与挑战。 研究团队与发表信息 本文由来自武汉大学、Sun Yat-Sen University和In...

数据管理教学:基于DataLad的多年多领域努力

科学研究数据管理教育的多年的多领域努力 研究背景 随着现代神经科学的发展,研究数据管理(Research Data Management, RDM)已经成为科学家们不可或缺的技能。然而,尽管研究数据管理对于科学研究具有重要性,这类技术技能往往在领域特化的研究生教育中被忽视。因此,越来越多的社区努力提供有组织的培训机会和自学材料,以帮助早期科研人员获得这方面的知识和技能。 Massachusetts Institute of Technology(MIT)的“the missing semester of your cs education”正是这种教育缺失的一个例证。此外,现代计算机和应用程序的高可用性极大地降低了用户对计算机的熟悉程度,这使得许多科学家缺乏有效管理研究数据和结果所需的基本技...

通过直接调制瓦级光子晶体面发射激光器实现高速大功率自由空间光通信

通过直接调制瓦级光子晶体面发射激光器实现高速大功率自由空间光通信

高速大功率自由空间光通信:瓦特级光子晶体表面发射激光器的直接调制 背景介绍 半导体激光器作为光通信的重要光源,因其体积小、成本低、寿命长、效率高等特点而被广泛应用。例如,垂直腔面发射激光器(VCSELs)由于其低功耗和宽带直接调制能力,适用于数据中心的短距离光互连;而分布反馈(DFB)激光器则因其单模操作特性,在长距离光纤通信中得到了广泛应用。近年来,利用半导体激光器的自由空间光通信(FSO)因其能够在长距离内实现高速传输,且无需光纤,因此备受关注。FSO 技术在超越5G和未来6G 通信中的回程和前传网络,卫星之间的通信以及深空通信中都具有潜在应用。在这些应用中,高功率和窄束宽的激光特性尤为重要。然而,传统的半导体激光器如VCSELs和DFB 激光器无法在单晶片上同时满足高功率和高速操作的要...

使用光频梳和可编程光存储器的高光谱内存计算

超光谱存储内计算与光频梳和可编程光存储器的应用 导言 近年来,机器学习的突破促进了包括医疗、金融、零售、汽车和制造业在内的多个行业的革命性发展。这些转变导致对广泛的矩阵-向量乘法运算(mvm)需求激增,这对于大规模优化和深度学习算法是至关重要的。然而,这种日益增长的计算需求挑战了传统的冯·诺依曼数字电子计算机架构,该架构将存储器和处理单元分开,从而导致“冯·诺依曼瓶颈”,即数据在存储器和处理器之间的传输速度限制了整体系统性能。为了解决这一性能瓶颈,存储内计算作为一种变革性的解决方案浮现出来,它通过将非易失性存储元素直接集成到处理器中,推动更高效的数据移动、降低能耗和实现高度并行计算。 与此同时,光学计算系统因其天生适合并行数学运算而重新引起了关注。这些系统自几十年前首次出现以来,已经取得了显...

炎症性肌肉疾病的细胞类型图揭示了包涵体肌炎中特定肌纤维的易感性

炎性肌病中肌纤维类型的异质性表征与包涵体肌炎的选择性易感性 随着年龄的增长,炎性肌病的发病率逐渐上升,其中包涵体肌炎(IBM)作为最常见的类型,目前尚无有效治疗方法。与其他炎性肌病不同,IBM呈慢性病程并具有炎症和退行性病理特征。更为复杂的是,引发IBM进展的因素与分子驱动因素尚不明确。为了深入研究该疾病,研究人员采用了单核RNA测序与空间转录组学,对患者的肌肉活检样本进行了细胞类型特异性驱动因素的绘图,以期比较IBM肌肉与免疫介导的坏死性肌病(IMNM)及无炎症的骨骼肌样本。 研究背景与目的 IBM是影响老年人群的最普遍炎性肌病,由于免疫反应和肌肉纤维退行性变化共同作用,导致逐渐丧失肌肉功能。然而,导致IBM的分子机制并不清楚。本研究旨在通过新型技术手段,揭示IBM病因,并为未来治疗策略提...

k-emophone: 包含情绪、压力和注意力标签的移动和可穿戴数据集

科学数据报道 | K-emophone: 一种带有原地情绪、应激和注意力标签的移动和可穿戴数据集 背景介绍 随着低成本移动和可穿戴传感器的普及,许多研究已经利用这些设备来跟踪和分析人类的心理健康、生产力以及行为模式。然而,迄今为止,尽管在实验室环境下采集的数据集已有所发展,仍存在缺少在真实世界情境中采集到情绪、应激和注意力等标签的数据集,这限制了情感计算 (Affective Computing) 和人机交互 (Human-computer Interaction) 领域的研究进展。 研究来源 本文的研究由Soowon Kang、Woohyeok Choi、Cheul Young Park、Narae Cha、Auk Kim、Ahsan Habib Khandoker、Leontios Ha...

基于深度学习的运动想象EEG分类方法,通过皮层源成像的功能连接实现

基于深度学习的运动想象EEG分类通过利用皮层源成像的功能连接 研究背景与动机 脑-机接口(BCI)是直接解码并输出脑活动信息的系统,无需依赖相关的神经通路和肌肉,从而实现外部设备的通信或控制。在BCI系统中,常用的信号包括脑电图(EEG)、脑磁图(MEG)和功能性磁共振成像(fMRI)。其中,EEG是最常用的信号,因为它具有非侵入性、易于实施、成本低和无伦理挑战等优点。 运动想象(Motor Imagery, MI)是BCI中的一个重要范式,在无刺激条件下,运动想象任务期间会自发地产生运动想象EEG信号(MI-EEG)。MI-EEG信号中可能嵌入了运动皮层在运动意图期间的神经活动模式表示,因此解码MI-EEG信号已成为热门研究课题,以通过BCI系统实现对外部设备的精神控制。 现有的MI-EE...

学生在创造性过程中艺术与工程思维的脑电研究

一项关于在创造性过程中艺术与工程思维脑电活动的研究 背景与研究动机 创造力被普遍认为是想象出新颖而有价值事物的能力。研究人员发现存在两种创造性思维方式:成长型思维和固定型思维。成长型创造性思维可以通过时间和实践提高技能,而固定型创造性思维则认为创造技能是不可改变的。教育在培养创造力的过程中起到了至关重要的作用,研究也表明艺术和工程领域的学生在创造性任务中的表现是有明显差异的。 研究出处 这项研究论文《An EEG study on artistic and engineering mindsets in students in creative processes》由Yuan Yin、Ji Han和Peter R. N. Childs撰写,分别来自于Imperial College Lond...

时间聚合与传播图神经网络用于动态表示

动态图表示的时间聚合和传播图神经网络 背景介绍 动态图(temporal graph)是一种在连续时间内节点间具有动态交互的图结构,图的拓扑结构随时间的推移不断演变。这种动态变化让节点在不同时刻展现出变化的偏好,这对捕捉用户偏好和检测异常行为非常关键。然而,现有的研究通常采用有限邻居生成动态表示,这不仅降低了性能,还引发了高延迟的在线推断问题。为了应对这些挑战,本文提出了一种全新的时间图卷积方法,即时间聚合和传播图神经网络(Temporal Aggregation and Propagation Graph Neural Networks,简称TAP-GNN)。该方法通过展开时间图以消息传递的姿态分析了动态表示问题的计算复杂度,并设计了一个聚合和传播模块(AP block),有效减少了历史邻...