基于图的非抽样策略增强知识图谱推荐系统

基于图的非抽样策略增强知识图谱推荐系统

基于图的无采样知识图谱增强推荐 近年来,知识图谱(Knowledge Graph, KG)增强推荐系统,旨在解决冷启动问题和推荐系统的可解释性,已经吸引了大量的研究兴趣。现有的推荐系统通常侧重于隐式反馈,如购买历史记录,但缺乏负反馈。大多数系统采用负采样策略处理隐式反馈数据,这可能忽略了潜在的正用户-项目交互。而其他一些工作则采用无采样策略,将所有未观察到的交互视为负样本,并为每个负样本分配权重,以表示该样本为正样本的概率。然而,这些方法使用简单直观的权重分配策略,不能捕捉所有交互数据中的潜在关系。 研究背景与动机 随着互联网的快速发展,信息超载的问题日益严重。为了提高用户的搜索体验并增加产品供应商的收入,推荐系统应运而生,并在电子商务、社交网络等多个应用中取得了巨大成功。近年来,作为内容信...

利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜

利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜

利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜 背景介绍 电子显微镜(Electron Microscopy,简称EM)作为一种高分辨率成像工具,对细胞生物学取得了重大突破。传统的EM技术主要用于二维成像,尽管已经揭示了复杂的纳米级别细胞结构,但在研究三维(3D)结构时存在一定局限性。体积电子显微镜(Volume Electron Microscopy,简称VEM)作为一种更为先进的技术,通过串联切片和断层扫描技术(如透射电子显微镜TEM和扫描电子显微镜SEM)实现了细胞和组织的3D成像,可以提取细胞、组织甚至小模型生物体的纳米级3D结构。 尽管VEM技术突破了传统二维EM的局限性,但其成像速度和质量之间存在固有的权衡关系,导致成像区域和体积的限制。此外,生成各向同性(isot...

基于注意力引导的图结构学习网络用于基于EEG的听觉注意力检测

基于注意力引导的图结构学习网络用于基于EEG的听觉注意力检测

注意引导的图结构学习网络在基于EEG的听觉注意检测中的应用 学术背景 “鸡尾酒会效应”描述了人类大脑在多说话者环境中选择性集中注意力于一个说话者而忽略其他人的能力。然而,对于听力受损者来说,这种情况构成了一个重大挑战。尽管现代听觉假体如助听器和人工耳蜗在减噪方面有效,但它们往往无法区分听者所要关注的信号。听觉注意检测(Auditory Attention Detection,AAD)任务解决此问题的潜力在于,它直接从大脑中提取与注意力相关的信息。神经科学研究表明,非侵入性的神经记录技术,如脑电图(Electroencephalography,EEG),在解码听觉注意方面具有巨大潜力。为了解决EEG信号的解码问题,研究人员开发了各种方法来解释EEG信号,并由此确定注意力,调整助听器性能。 论文...

通过视觉运动整合任务揭示脑功能网络的变化

机能脑网络在视觉运动任务中的重组变化 研究背景 运动执行是一个复杂的认知功能,依赖于空间上接近和远离的脑区的协调激活。视觉运动整合任务需要处理和解释视觉输入以规划运动执行,并调整人类运动以与环境互动。基于功能性磁共振成像(fMRI)的研究表明,前额叶和顶叶区域在视觉运动整合过程中起着重要作用。此外,sensorimotor皮层也涉及其中。然而,现有研究主要使用fMRI技术探索这些过程,对于脑电图(EEG)信号的研究相对较少。 在诸多研究中,通过功能连接性分析明确了不同脑区之间的统计依赖关系,并研究它们在不同条件下如何相互作用和交流。有研究通过脑磁图(MEG)和颅内EEG探讨了大脑在gamma波段的连接性,发现大脑在视觉运动过程中的动态参与。此外,基于脑电图的研究确认了前顶叶区域在视觉运动过程...

贝叶斯估计群体事件相关电位成分

背景介绍 事件相关电位(Event-Related Potentials,ERPs)的研究提供了关于大脑机制的重要信息,尤其在解释各种心理过程时具有独特优势。在这些研究中,通常在被试执行特定任务时记录多通道脑电图(EEG),根据刺激类型和被试反应将试验分为不同类别,并取各类别试验的平均值计算ERPs。记录头皮表面的ERPs有较好的时间分辨率,但由于体积传导效应,其空间分辨率较低。 解决体积传导问题的一种方法是使用盲源分离(Blind Source Separation,BSS)方法。若BSS方法用在单次试验数据间,其主要目标是更准确地刻画个体ERPs;若BSS方法用在个体ERPs数据间,其主要目标是识别大脑反应的共性特征。然而,目前的大多数BSS算法并不能充分考虑ERPs噪声的复杂特性:空间...

神经电极在慢性植入过程中对小鼠神经功能连接的层依赖性影响

神经电极在慢性植入过程中对小鼠神经功能连接的层依赖性影响 引言 该研究探讨了慢性植入微观电极对小鼠C57BL6野生型小鼠脑内神经功能连接的长期影响。植入脑内的电极能够进行神经信号的记录和电刺激,在脑机接口(Brain-Computer Interface, 简称BCI)系统中有着广泛的应用,如恢复运动控制和感官感知。然而,随着时间的推移,植入电极记录到的信号会逐渐衰退,该退化被认为是“异物反应”(Foreign-Body Response, FBR)造成的。然而,FBR如何具体影响植入周围区域的神经回路功能及其稳定性尚不明确。本研究旨在揭示长期FBR如何改变局部神经回路功能,深入理解其对BCI解码装置的影响。 研究背景与目的 植入神经电极虽然有潜在的应用价值,然而其在记录灵敏度和稳定性上仍存...

表面肌电信号的拓扑结构:利用黎曼流形解码手部手势

表面肌电信号的拓扑结构:利用黎曼流形解码手部手势 本论文由Harshavardhana T. Gowda(加利福尼亚大学戴维斯分校电子与计算机工程系)和Lee M. Miller(加利福尼亚大学戴维斯分校心理与脑科学中心、神经生理学和行为系、耳鼻喉科-头颈外科系)联合撰写。该论文发表于《Journal of Neural Engineering》。 研究背景 表面肌电图(sEMG)信号通过在皮肤表面放置传感器来非侵入性地记录来自运动单元(MU)激活的电信号。这些信号在上肢手势解码中的应用,对于截肢者的康复、人造肢体增强、计算机手势控制以及虚拟/增强现实等领域具有重要意义。然而,sEMG信号的实际应用受到了许多因素的限制,比如皮下组织的厚度、依赖于电极位置的信号变异性等。因此,如何解码和区分不...

前运动阶段的脑电图帮助脑机接口识别运动意图

前运动阶段的脑电图帮助脑机接口识别运动意图 背景与研究目的 脑机接口(Brain-Computer Interface, BCI)是一项通过神经信号直接翻译人类意图以控制设备的技术,具有广泛的应用前景[1]。脑机接口有可能改变日常生活、娱乐、通信、康复以及教育等多个领域。然而,现阶段基于运动意图的脑机接口存在一些挑战,特别是前运动阶段的脑电图(EEG)特征不明显且容易受注意力影响,这制约了运动BCI性能的提升。 基于上述背景,河北工业大学健康科学与生物医学工程学院、可靠性与智能化电气设备国家重点实验室和天津生物电磁技术与智能健康重点实验室的Yuxin Zhang、Mengfan Li、Haili Wang、Mingyu Zhang和Guizhi Xu(通讯作者)针对如何在前运动编码时加入准备...

基于高频稳态视觉诱发场的视觉脑机接口

基于高频稳态视觉诱发场的视觉脑机接口

基于高频稳态视觉诱发场的视觉脑机接口 背景介绍 脑机接口(Brain-Computer Interface, BCI)技术通过解码特定的脑活动信号,使用户能够控制机器。尽管侵入性BCI在捕获高质量脑信号方面表现出色,但其应用主要局限于临床环境。而非侵入性方法,如脑电图(Electroencephalography, EEG),则为广泛应用BCI提供了更具可行性的途径。然而,由于脑脊液和颅骨的影响,EEG信号在传播过程中会变得非常微弱,且颅骨的差异性和各向异性导电性让定位EEG信号位置变得更加困难。 磁源成像(Magnetoencephalography, MEG)是一种非侵入性成像脑活动的方法,它在捕捉精细空间信息方面优于EEG。这种优势主要源自磁通量不会像电流那样受到衰减。然而,传统MEG...

听觉提示对帕金森病步态过程中STN活动短时尺度动态的调节作用

帕金森病(Parkinson’s Disease, PD)患者通常会经历步态障碍,这种障碍严重影响他们的生活质量。以往的研究表明,基底神经节的β频率(15-30 Hz)振荡活动可能与步态障碍相关,但这些振荡活动在步态过程中的确切动态信息尚不清楚。此外,已有研究发现音频提示可以改善PD患者的步态运动学,如果能更好地了解这一提示的神经生理机制,则可以通过自适应深部脑刺激(ADBS)技术治疗步态障碍。因此,本研究旨在描绘步态过程中丘脑下核(subthalamic nucleus, STN)振荡活动的动态特征,并探索音频提示调节步态的神经生理机制。 来源和作者信息 本文由Chien-Hung Yeh、Yifan Xu、Wenbin Shi、James J. Fitzgerald、Alexander ...