腫瘍切除後の低悪性度神経膠腫における神経膠腫成長モデルの予測価値の評価

低級グリオーマ手術後の成長モデル予測価値の評価研究レビュー はじめに グリオーマは、脳内で急速に拡散する侵襲性脳腫瘍である。この拡散のパターンと速度を理解し予測することで、治療計画の最適化が可能である。拡散-増殖モデルに基づくグリオーマ成長モデルは実現可能性を示しているが、実際の臨床データでの応用と評価には依然として課題がある。この問題の評価を改善するために、本研究では腫瘍成長問題をランキング問題と見なし、平均精度(Average Precision, AP)を指標として使用することを提案する。この方法は特定の体積閾値を必要とせず、空間パターンをより正確に評価できる。 研究の出典 この論文は、カリン・A・バン・ガルデレン(Karin A. van Garderen)、セバスチャン・R・バン・...

MI-EEGデコーディングのための注意メカニズムを備えた時間依存学習CNN

MI-EEGデコードにおける注意機構に基づく時間依存学習畳み込みニューラルネットワーク(CNN) 研究背景と問題提起 脳-機械インターフェース(Brain-Computer Interface, BCI)システムは、脳信号をリアルタイムで翻訳してコンピュータと通信する新たな手段を提供しています。近年、BCI技術は麻痺患者に対する補助や予防的なケアにおいて重要な役割を果たすようになりました。現在の多くのBCIシステムは、非侵襲的で比較的便利な脳波(EEG)信号記録に依存して脳活動を追跡しています。しかし、同じMI(運動想像)タスクの期間中でも、異なる時期に生じる異なるMI関連パターンの時間依存性特性はしばしば無視され、MI-EEGデコード性能が大きく制約されています。 論文の出典と著者情報 論...

物理的知識を取り入れた深層学習による筋骨格モデル化:表面EMGから筋力と関節運動学の予測

肌骨モデルは、生体力学解析に広く利用されており、直接計測が困難な運動変数(例:筋力や関節モーメント)を推定することができます。従来の物理駆動の計算肌骨モデルは、神経駆動から筋肉、筋肉の動力学、および身体と関節の運動学と動力学の間の動的相互作用を説明することができます。しかし、これらのモデルはその複雑さのため、動作速度が遅く、リアルタイムアプリケーションの実現が難しいです。近年、データ駆動方式はその実現速度の速さと操作の簡単さから有望な代替手段となっていますが、基礎的な神経機械プロセスを反映することができません。 本研究では、物理学の知識を融合した深層学習フレームワークを提案し、筋骨モデリングを実現します。このフレームワークでは、物理分野の知識をデータ駆動モデルに導入し、ソフト制約として罰則/...

生のEEGを用いたリアルタイム視覚学習者識別のためのディープラーニングベースの評価モデル

在今日の教育環境において、学生の学習スタイルを理解することは、彼らの学習効率を向上させるために極めて重要です。特に視覚学習スタイル(visual learning style)の識別は、教師と学生が教育と学習の過程でより効果的な戦略を取るのに役立ちます。現在、視覚学習スタイルを自動的に識別する主な方法は、脳波(Electroencephalogram, EEG)と機械学習技術に依存しています。しかし、これらの技術は通常、アーティファクトの除去および特徴抽出のためにオフライン処理が必要であり、そのためリアルタイムでの適用が制限されています。 この研究は、Soyiba Jawed、Ibrahima Faye、およびAamir Saeed Malikが《IEEE Transactions on N...

運動イメージ解読のための多特徴注意畳み込みニューラルネットワーク

脑機インターフェース(Brain-Computer Interface, BCI)は、神経系と外部環境を接続するコミュニケーション手段です。運動イメージ(Motor Imagery, MI)はBCI研究の基礎であり、運動実行前の内的リハーサル(Internal Rehearsal)を指します。非侵襲性技術である脳波(Electroencephalography, EEG)は、そのコスト効率と利便性のため、高い時間分解能で神経活動を記録することができます。被験者が特定の身体部位を移動することをイメージすると、大脳の特定領域でエネルギー変化(ERD/ERS)が発生し、これらの変化はEEGにより記録され運動意図を識別するために使用されます。MIに基づくBCIシステムは大きな進展を遂げており、外骨格...

EISATC-Fusion: 始まりの自己注意 時間的畳み込みネットワーク融合 モーターイメージEEG認識用

EISATC-Fusion: 始まりの自己注意 時間的畳み込みネットワーク融合 モーターイメージEEG認識用

研究背景 脳と外部デバイスの直接通信を実現する脳-コンピュータインターフェース技術(brain-computer interface, BCI)は、人間と機械のインタラクション、運動リハビリ、医療などの分野で広く応用されています。BCIの一般的なパラダイムには、定常状態視覚誘発電位(steady-state visual evoked potentials, SSVEP)、P300、運動イメージ(motor imagery, MI)などがあります。特に、MI-BCIはその広い応用前景のために注目されています。 MI-BCIは通常、脳波(electroencephalography, EEG)信号を用いて運動イメージを検出し、利用者が運動を想像することでデバイス(電動車椅子、カーソル、上肢ロボ...

トランスフォーマーベースのアプローチによるディープラーニングネットワークと時空間情報を組み合わせた生EEG分類

研究背景及目的 近年では、脳-コンピュータインタフェース(Brain-Computer Interface、BCI)システムが神経工学および神経科学の分野で広く応用され、脳波(Electroencephalogram、EEG)は中枢神経系の異なるニューロン集団の活動を反映するデータツールとして、これらの分野で重要な研究テーマとなっています。しかし、EEG信号は低空間分解能、高時間分解能、低信号対雑音比、および個体差が大きいという特徴があり、信号処理および正確な分類において大きな課題となっています。特に運動想像(Motor Imagery、MI)というEEG-BCIシステムの一般的なパラダイムにおいて、異なるMIタスクのEEG信号を正確に分類することは、BCIシステムの機能回復およびリハビリテ...

EMG駆動ロボットハンドトレーニングによる慢性脳卒中における半球間バランス回復の神経メカニズムの解明:動的因果モデルの洞察

EMG駆動ロボットハンドトレーニングによる慢性脳卒中における半球間バランス回復の神経メカニズムの解明:動的因果モデルの洞察

EMG駆動のロボットハンドトレーニングが慢性脳卒中患者の半球間バランスの回復に与える神経メカニズム:動的因果モデリングによる洞察 脳卒中は一般的な障害の原因であり、多くの脳卒中生存者は上肢麻痺を患います。上肢機能の障害は6ヶ月以上続くことが多く、完全回復する生存者は少数(12%未満)です。これらの患者の日常生活能力を回復させ、生活の質を向上させるために、研究者たちは脳卒中後のリハビリプランの開発に取り組んでいます。 近年、ロボット補助装置を使用した上肢のリハビリに関する研究が広く注目を集めています。ロボットリハビリは一貫性のある、集中的かつインタラクティブなトレーニング体験を提供し、患者の積極的な参加を促します。総合的な分析では、ロボット補助トレーニングを受けた個体は上肢のFugl-Meye...

ウェーブレットベースの時間-スペクトル-注意相関係数による運動想像EEG分類

脑機インターフェース(Brain-Computer Interface, BCI)技術は近年急速に発展しており、末梢神経や筋肉を介さず、大脳を直接制御する先端技術として注目されています。特に運動イメージ(Motor Imagery, MI)脳波(Electroencephalography, EEG)の応用において、BCI技術は大きな可能性を示しています。MI-EEG信号を分析することで、身体障害や神経筋退化の患者の生活の質を向上させる手助けが可能です。しかし、個人間の差異や大脳活動の安定性、低信号雑音比(Signal-to-Noise Ratio, SNR)などの要因により、複雑なEEG信号から有効な特徴を抽出し、MI-EEG分類システムの精度を向上させることは依然として大きな課題となって...

ADFCNN:運動イメージ脳コンピュータインターフェースのための注意ベースの二重スケール融合畳み込みニューラルネットワーク

ADFCNN:運動イメージ脳コンピュータインターフェースのための注意ベースの二重スケール融合畳み込みニューラルネットワーク

ブレイン・コンピュータ・インターフェース(Brain-Computer Interface, BCI)は、新たなコミュニケーションと制御技術として近年注目を集めている。脳波(EEG)に基づくBCIの中でも、運動イメージ(Motor Imagery, MI)は重要な分野であり、ユーザーの運動意図をデコードすることで、臨床リハビリテーション、スマート車椅子の制御、およびカーソル制御などの分野に応用されている。しかしながら、EEG信号の低い信号対雑音比(Signal-to-Noise Ratio, SNR)、非定常性、低い空間分解能および高い時間分解能などの複雑な特性のため、運動意図の正確なデコードには依然として挑戦が残っている。現在のMI基BCIデコードには主に伝統的な機械学習と深層学習の手法が...