二重レベル相互作用認識異種グラフニューラルネットワークによる薬包推奨

医学パッケージ推薦システムの研究:二層次の相互作用意識に基づく異種グラフニューラルネットワーク 電子健康記録(EHRs)が医療分野で広く利用される中、それらから潜在的かつ価値のある医療知識を掘り起こし、臨床決定を支援する方法がディープラーニング技術の重要な研究方向の一つとなっています。個別化医療パッケージ推薦はこの分野の重要なタスクの一つであり、大量の医療記録を利用して各患者に最も安全かつ効果的な薬剤パッケージを選択することを目指しています。しかし、既存の医療パッケージ推薦方法は主にタスクを多ラベル分類またはシーケンス生成問題としてモデリングしており、主に個々の薬剤と他の医療エンティティとの関係に焦点を当てているため、薬剤パッケージと他の医療エンティティとの相互作用を見過ごしがちであり、推薦...

生物ネットワークからタンパク質知識を学習することによる薬物ターゲット親和性の予測

##生物ネットワークを学習してタンパク質知識を用い薬物-標的親和性を予測する 背景紹介 薬物-標的親和性(drug-target affinity, DTA)の予測は、新薬の発見過程において重要な位置を占めています。効率的かつ正確なDTA予測は、新薬開発の時間と経済的コストを大幅に短縮できます。近年、深層学習技術の爆発的発展により、DTA予測に強力なサポートが提供されています。既存のDTA予測方法は主に1Dタンパク質配列に基づく方法と2Dタンパク質構造図に基づく方法に分けられます。しかし、これらの方法は標的タンパク質の内在特性にのみ注目し、過去の研究で明らかにされているタンパク質相互作用の広範な先験知識を無視しています。 この問題に対して、本研究ではMSF-DTA(多源特徴融合に基づく薬物-...

ナレッジグラフに基づく説明可能でパーソナライズされた認知推論モデル: 一般診療の意思決定に向けて

ナレッジグラフに基づく説明可能でパーソナライズされた認知推論モデル: 一般診療の意思決定に向けて

全科診断意思決定に向けた知識グラフに基づく説明可能なパーソナライズド認知推論モデル 背景紹介 全科医学はコミュニティおよび家庭医療の重要な構成要素として、異なる年代、性別、臓器系統および各種疾患を包括します。その核心的な理念は、人を中心とし、家庭を単位とし、長期にわたる包括的な健康の維持と促進を強調することです。しかし、既存の証拠によると、中国の初級衛生保健(Primary Health Care, PHC)の質はまだ満足のいくレベルに達していません。臨床診断と治療の正確性に関して顕著な向上の余地があります。この問題に対応するために、人工知能に基づく意思決定ツールが徐々に全科医の疾患診断の強力な補助となっています。しかし、既存の研究は主に二つの問題を抱えています。一つは十分な拡張性と説明能力...

知識強化型グラフトピック変換機による説明可能な生物医学テキスト要約

知識強化型グラフトピック変圧器の説明可能な生物医学テキスト要約への応用 研究背景 生物医学の文献発表量が増加し続けているため、自動生物医学テキスト要約タスクの重要性が高まっています。2021年にはPubMedデータベースだけで1,767,637本の論文が発表されました。既存の事前学習言語モデル(Pre-trained Language Models、PLMs)を用いた要約方法は性能を向上させていますが、特定の分野の知識の捕捉や結果の説明可能性において顕著な制限があります。これにより、生成された要約が一貫性に欠け、冗長な文章や重要な分野知識の欠落を含む可能性があります。さらに、変圧器モデルのブラックボックス特性はユーザーが要約生成の理由や方法を理解するのを困難にするため、生物医学テキスト要約に...

複数の先行知識を持つグラフニューラルネットワークによるマルチオミクスデータ分析

複数の先行知識を持つグラフニューラルネットワークによるマルチオミクスデータ分析

医学多組学データ分析における多重先験知識グラフニューラルネットワーク 背景紹介 精密医療は将来の医療保健において重要な分野であり、患者に個別化された治療計画を提供することにより、治療効果を改善しコストを削減します。例えば、乳がん患者の複雑な臨床、病理、および分子特性を考えると、同じ治療が異なる効果を示すことがあります。バイオ医学技術の急速な発展に伴い、多組学データを通じて疾病の特性化が可能になっています。多組学アプローチは単一組学アプローチに比べて、複数のデータ間で一貫性と補完的な情報を捉えることができ、より正確かつ深くモデルを構築することができます。例えば、がんゲノム図譜(The Cancer Genome Atlas, TCGA)は、mRNA 発現、DNA メチル化、およびコピー数変異(...

診断予測のための段階認識階層型注意関係網

診断予測における階層的注意関係ネットワークの応用 近年、電子健康記録(Electronic Health Records、略してEHR)は医療意思決定の向上やオンラインでの病気の検出と監視において極めて価値があります。同時に、深層学習に基づく方法はEHRを利用した健康リスク予測や診断予測で大きな成功を収めました。しかし、深層学習モデルには通常、大量のデータが必要であり、その理由はパラメータの膨大な数にあります。さらに、EHRデータには多くの希少な医療コードが存在し、これが臨床応用に大きな課題をもたらします。このため、一部の研究では医療オントロジーを用いて予測性能を強化し、解釈可能な予測結果を提供することが提案されています。しかし、これらの医療オントロジーは通常、規模が小さく、粒度が粗いため、...

動的表現のための時間的集約と伝播のグラフニューラルネットワーク

動的グラフ表現の時間集約と伝搬グラフニューラルネットワーク 背景紹介 動的グラフ(temporal graph)は、連続した時間の中でノード間に動的なインタラクションが存在するグラフ構造であり、グラフのトポロジー構造は時間の経過とともに変化し続けます。このような動的な変化はノードが異なる時間点で異なる嗜好を示すことを可能にし、ユーザーの嗜好を捉えて異常行動を検出する上で非常に重要です。しかし、既存の研究は通常、限られた近隣ノード生成による動的表現を採用しており、これが性能の低下と高いレイテンシーオンライン推論の問題を引き起こしています。これらの課題に対処するために、本論文は新しい時間グラフ畳み込み法である時間集約と伝搬グラフニューラルネットワーク(Temporal Aggregation a...

AutoAlign: 大規模言語モデルによる完全自動かつ効果的な知識グラフのアライメント

AutoAlign:大規模言語モデルによる全自動・効率的な知識グラフのアライメント方法 知識グラフ(Knowledge Graph、KG)は、質問応答システム、対話システム、推薦システムなど多くの分野で広く利用されています。しかし、異なる知識グラフには、同一の現実のエンティティが異なる形で保存される問題があるため、知識の共有と情報の補完が非常に困難です。特に実際のアプリケーションでは、これらの知識グラフの統合が中心的な課題となります。これにはエンティティアライメント(Entity Alignment)が関与しており、異なる知識グラフで同じエンティティを表すエンティティを識別することになります。しかし、既存の方法は通常手作業の種子アライメント(Seed Alignments)が必要で、その取得...

知識グラフを用いたソーシャル強化説明可能な推薦

知識グラフを基盤としたソーシャル強化型説明可能な推薦システム はじめに インターネット情報量の増加に伴い、ユーザーと商品の関連情報も急速に拡大し、情報過多問題が日々深刻化しています。推薦システムはユーザーに対して少量の好みに合った商品を推薦することでこの問題を効果的に緩和できます。それは、ユーザーが迅速に関心のあるコンテンツを見つける手助けとなるだけでなく、企業には精度の高いマーケティングを可能にし、顧客ロイヤルティを向上させます。電子商取引、ソーシャルメディア、検索エンジンなど様々なプラットフォームで、推薦システムの役割はますます重要になっています。 推薦システムの性能は、推薦技術に大いに依存しています。初期の協調フィルタリング(Collaborative Filtering, CF)法は...

説明可能な推薦のための知識強化グラフニューラルネットワーク

説明可能な推薦のための知識強化グラフニューラルネットワーク

ナレッジエンハンスドグラフニューラルネットワークを用いた説明可能な推薦 導入 オンライン情報の爆発的な増加に伴い、推薦システムは情報過多問題を解決するうえで重要な役割を果たしています。従来の推薦システムは通常、ユーザの履歴に基づいて推薦を生成する協調フィルタリング(Collaborative Filtering、以下CF)方法に依存しています。CF方法は主にメモリベースとモデルベースの技術に分かれます。メモリベースの方法にはユーザベースやアイテムベースのCFがあり、モデルベースの方法は行列分解などのモデルを学習して推薦を行います。近年、ディープラーニング技術は情報検索や推薦システムの研究において非常に高い有効性を示しています。多くのディープラーニングに基づく推薦方法が高い推薦性能を達成してい...