複数の機能的結合に基づくグラフ畳み込みネットワークを用いた自閉症スペクトラム障害の識別

本文タイトルは「Identification of Autism Spectrum Disorder Using Multiple Functional Connectivity-based Graph Convolutional Network」で、雑誌「medical & biological engineering & computing」の2024年第62巻2133-2144ページに掲載されました。本研究は、グラフ畳み込みネットワーク(Graph Convolutional Networks, GCN)と静的機能的磁気共鳴画像法(rs-fMRI)データを組み合わせ、自閉症スペクトラム障害(Autism Spectrum Disorder, ASD)の早期診断を実現するための多機能接続...

肺がん表現学習のためのグラフニューラルネットワーク

肺がん表現学習のためのグラフニューラルネットワーク

グラフニューラルネットワークに基づく肺癌の表現学習 背景紹介 デジタル病理学の急速な発展に伴い、画像ベースの診断システムは正確な病理診断においてますます重要になっています。これらのシステムは、全スライド画像(Whole Slide Images, WSIs)に対する複数インスタンス学習(Multiple Instance Learning, MIL)技術に依存しています。しかし、WSIsを効率的に表現する方法は依然として解決が急がれる問題です。深層ニューラルネットワークの出現により、ビジュアルコンピューティングは画期的な進展を遂げましたが、WSIの膨大なピクセル数に直面する現有のニューラルネットワーク手法は依然として大きなチャレンジに直面しています。近年、いくつかの研究がグラフベースのモデル...

ソースレベルのEEGとグラフ理論に基づいた脳卒中後てんかん患者の機能的結合の変化

ソースレベルEEGとグラフ理論に基づく卒中後てんかん患者の機能的結合の変化に関する研究報告 研究背景 てんかんの病因は多岐にわたり、特発性、先天性、頭部外傷、中枢神経系感染、脳腫瘍、神経変性疾患、脳血管疾患などが含まれます。その中で、脳血管疾患は全てんかん症例のおよそ11%を占め、高齢者てんかん患者の最も一般的な病因となっています。また、卒中後てんかん(Post-Stroke Epilepsy, PSE)は卒中患者の一般的な合併症であり、3%から30%の卒中患者がPSEに発展する可能性があります。PSEのリスク要因としては、皮質の関与、出血性の転化、早期発作、若年発病、高いNIHSSスコア、アルコール依存などが挙げられます。 ネットワーク科学とグラフ理論は、脳機能の理解において顕著な可能性を...

階層的ネガティブサンプリングに基づくグラフ対照学習アプローチによる薬剤-疾患関連予測

階層的負サンプリングに基づくグラフ対比学習を用いた薬物-疾患関連予測の研究 薬物-疾患関連(RDAs)の予測は、疾患治療戦略の解明や薬物の再利用において重要な役割を果たしています。しかし、既存の方法は主に限定されたドメイン特有の知識に依存して薬物と疾患の候補関連を予測しているため、効果が限定されています。また、薬物-疾患関係の未知の情報を単純に負のサンプルとして定義することには固有の欠点があります。これらの課題を克服するため、本研究では階層的な負のサンプリングに基づく新しいグラフ対比モデルであるHSGCL-RDAを提案し、薬物と疾患の潜在的な関連を予測します。 研究背景と研究課題 薬物開発および疾患進行の制御プロセスは長くて高価であり、増え続ける疾患の数とその変異により効果的な薬物の需要が増...

非小細胞肺癌に対する免疫療法の有効性予測:多視点適応重み付きグラフ畳み込みネットワークを使用

非小细胞肺癌的免疫疗法疗效预测:多视角自适应加权图卷积网络研究报告 背景介绍 肺癌は発症率が非常に高く、予後が悪い悪性腫瘍であり、長年にわたりその致死率は高止まりしています。すべての肺癌患者の中で、非小細胞肺癌(Non-Small Cell Lung Cancer, NSCLC)は約85%を占めています。新しい治療手段として、腫瘍免疫療法は癌患者に新しい治療のアイデアを提供しました。しかし、免疫療法は高額であり、約20%から50%の患者のみが満足のいく効果を得られるだけです。さらに治療中には、免疫性肺炎や肝炎などの副作用が発生する可能性があります。したがって、患者が免疫療法を受ける前にその効果を予測することは重要です。 近年、機械学習を基盤とする放射線オミクスは、NSCLCの免疫療法の効果予...

KG4NH:食事栄養と人間の健康に関する質問応答のための包括的な知識グラフ

背景と研究の動機 周知の通り、食物の栄養と人間の健康は密接に関連しています。科学的研究によると、食事の栄養が不適切であることは200種類以上の病気と関連しており、特に腸内フローラの代謝を考慮した場合、食物の栄養成分と病気との間の複雑な相互作用は体系化と実際の応用が困難です。そのため、包括的な知識を統合し実用的な枠組みを提供することが急務であり、飲食関連のクエリ取得をサポートする必要があります。 研究の出典 本稿はChengcheng Fu、Xueli Pan、Jieyu Wu、Junkai Cai、Zhisheng Huang、Frank Van Harmelen、Weizhong Zhao、Xingpeng Jiang、そしてTingting Heが共同で執筆した研究に基づいています。この...

CIGNN: カフレス連続血圧推定のための因果情報とグラフニューラルネットワークに基づくフレームワーク

CIGNN: 因果関係とグラフニューラルネットワークに基づく袖なし連続血圧推定フレームワーク 背景紹介 世界保健機関(WHO)のデータによると、世界中で約11.3億人が高血圧に影響を受けており、2025年にはこの数字が15億に増加すると予想されています。高血圧は心臓病や脳卒中などの心血管疾患の重要な危険因子であり、これらは世界の主要な死亡原因です。高血圧の普及は、認知症や障害の負担も増加させているため、高血圧の予防と管理は世界の健康結果を改善するために至関重要です。 連続血圧(BP)測定は、高血圧の診断と予防に豊富な情報を提供します。連続的に血圧を監視することで、患者の血圧パターンや傾向をより詳細に把握でき、治療の要否や現在の治療法の調整が必要かどうかを示すことができます。さらに、連続血圧モ...

時間的知識グラフと医療オントロジーによる将来の障害の予測

未来の病気予測:時間的知識グラフと医療オントロジーの融合 電子健康記録(Electronic Health Records, EHRs)は、現代の医療機関にとって不可欠なツールです。これらは患者の詳細な健康履歴を記録し、人口統計データ、薬物、実験結果、治療計画を含んでいます。これらのデータは、医療サービス間の連携や調整を改善し、医療提供者が健康の傾向を発見し、データに基づいた決定を下すのを助け、患者の全体的なケアの質を向上させることができます。しかし、EHRsに保存されているデータの大部分は非構造化であり、特に臨床医が記述する自由形式の患者健康状態のテキストデータは、情報の抽出と有効な利用に大きな課題をもたらします。 この課題に対処するため、多くの研究が自然言語処理(Natural Lang...

EHR-HGCN: 電子カルテにおける異種グラフ畳み込みネットワークを使用したテキスト分類のための強化ハイブリッドアプローチ

EHR-HGCN: 電子カルテにおける異種グラフ畳み込みネットワークを使用したテキスト分類のための強化ハイブリッドアプローチ

EHR-HGCN:電子健康記録テキスト分類の新しいハイブリッド異種グラフ畳み込みネットワーク方法 学術的背景紹介 自然言語処理(NLP)の急速な発展に伴い、テキスト分類はこの分野の重要な研究方向の一つとなりました。テキスト分類は、文献の背後にある知識を理解するのを助けるだけでなく、生物医学テキスト、特に電子健康記録(Electronic Health Records, EHR)などの分野でも広く応用されています。既存の研究は主に双方向トランスフォーマーに基づくエンコード表現方法(BERTなど)や畳み込みニューラルネットワーク(CNN)を利用した深層学習方法に集中しています。しかし、これらの方法は医学長文の処理時に入力長さの制限や高い計算資源の需要に直面することが多いです。また、テキスト分類の...

知識グラフに基づく推薦を用いた生物医学的関係抽出

医学関係抽出と知識グラフ推薦を結合した研究報告 背景説明 医学分野において、文献の爆発的な増加により、研究者は自身の専門分野の最新の進展を追跡することが難しくなっています。自然言語処理(NLP)分野から見ると、進化する自動化ツールは非構造化テキストから関連情報を識別および抽出するのを助け、このタスクは関係抽出(Relation Extraction、RE)と呼ばれます。REの主要な目標はテキストから医学的な実体間の関係を抽出して分類し、生物医学プロセスの理解を深めることです。 現在、大多数の最先端の医学REシステムは深層学習手法を使用しており、主に同種の実体間の関係(例:遺伝子と薬剤など)を対象としています。しかし、これらのシステムは大部分がテキストから直接抽出した情報に限られており、専門分...