アンチフェイクワクチン:視覚と意味の二重劣化を通じて顔の交換からプライバシーを守る

深度偽造と顔プライバシー保護に関する研究: Anti-Fake Vaccine の新しいアプローチ 背景と研究動機 近年、ディープフェイク(Deepfake)技術の進展は、個人のプライバシーおよび社会的安全に対する重大な脅威をもたらしています。ディープフェイク技術の代表的な応用として顔の置き換え技術があり、映画制作やコンピュータゲームなどで広く活用されていますが、その潜在的リスクが次第に顕著になっています。顔の置き換え技術は、元の顔(ソース顔)のアイデンティティ情報をターゲット顔に埋め込むことで、説得力がありながらも欺瞞的な合成画像やビデオを生成します。この技術が普及するにつれて、不正行為者が未承諾のフェイクコンテンツを簡単に作成できるようになり、被害者の名誉や安全が深刻に脅かされています。...

少数の注釈付きピクセルとポイントクラウドに基づく運転シーンの弱教師ありセマンティックセグメンテーション

少量のピクセルラベルと点群データを用いた自動車運転シーンの弱教師ありセマンティックセグメンテーション 背景と研究課題 セマンティックセグメンテーションは、コンピュータビジョンにおける重要な課題の一つであり、自動運転などの分野で広く応用されています。しかし、従来の完全教師ありセグメンテーション手法では、大量のピクセル単位のアノテーションが必要であり、そのコストは非常に高いです。 弱教師ありセグメンテーション(Weakly Supervised Semantic Segmentation、WSSS)は、ラベル付きデータが少ない状況で高精度なセグメンテーションを実現することを目的とし、画像ラベルやバウンディングボックス、点レベルのラベルなどの粗いアノテーションを利用して、ピクセル単位のセグメンテー...

バイオメトリクスデータの誤り訂正のための現代的な深層学習技術の再考

現代のディープラーニング技術における生体データのエラー訂正に関する再考 背景 情報技術の発展に伴い、生体データは認証や安全なデータ保管のための重要な要素として利用されています。従来の暗号技術は、均一分布で再現可能なランダム文字列に依存していましたが、指紋や虹彩スキャンのような生体データはそのような特性を備えておらず、生成・保管・取得に課題を抱えています。こうした課題に対処するため、生体データを暗号鍵の生成元として利用する生体認証暗号システム(biometric cryptosystems)が注目されています。しかし、生体データの変動性や外部要因(センサーのノイズなど)により、暗号鍵の正確な復元が困難となり、エラー訂正メカニズムが重要となります。 近年、ディープラーニング(DL)の進展により、...

日中と夜を超える擬似教師付き活動認識

学術論文報告 研究ハイライト:低照度活動認識のための擬似教師あり学習と適応型音声-映像統合 学術的背景 本研究では、低照度環境での活動認識の課題を中心に取り組んでいます。既存の活動認識技術は、十分な照明条件下では優れた性能を発揮しますが、暗所環境で記録された映像に対してはほとんど機能しません。この制約は主に以下の2つの理由に起因します:1) 訓練用の低照度映像の不足、2) テスト時の視覚情報の損失を引き起こす低照度でのコントラスト低下。また、従来の映像強調に基づく解法では、映像品質が一定程度向上するものの、色歪みや映像フレーム間の不連続性を引き起こし、活動認識タスクに対して逆効果をもたらすことが多いです。 低照度活動認識は、スマートホーム、自動運転、セキュリティ監視、野生動物観察など、多くの...

高効率デレイン+: 高効率のデレインのためのRainMix拡張による不確実性認識フィルタリングの学習

高効率画像除雨手法:RainMix増強を活用した高効率深層除雨ネットワーク 背景紹介 降雨は、コンピュータビジョンシステムによってキャプチャされた画像や動画の品質に大きな影響を与えます。雨滴や雨筋は画像の鮮明さを低下させ、歩行者検出、物体追跡、セマンティックセグメンテーションなどのタスクに悪影響を及ぼします。全天候対応の視覚システムを実現するためには、画像除雨が重要な要件となります。 しかしながら、従来の除雨手法は雨モデルの経験的仮定に基づいており、複雑な最適化または反復解法を必要とするため、計算コストが高く、リアルタイム性に欠けます。また、これらの仮定は実際の雨景の複雑な多様性を十分にカバーできず、除雨品質を制約します。 この問題を解決するために、本研究では、除雨問題を予測フィルタリング問...

可視光と赤外線の人物再識別のための適応的中間モダリティ整合学習

可視光と赤外線の人物再識別のための適応的中間モダリティ整合学習

可視光と赤外線を用いたクロスモダリティ学習に基づくAdaptive Middle-Modality Alignment Learning手法の研究 研究背景と課題 スマート監視システムの需要に伴い、可視光と赤外線を利用した人物再識別(Visible-Infrared Person Re-identification, VIReID)は注目を集める研究分野となっています。本課題は、異なるスペクトルモダリティ(可視光と赤外線)に基づいた人物画像をマッチングさせ、24時間対応の人物識別を実現することを目的としています。可視光画像と赤外線画像は異なる光スペクトルから生成されるため、照明、テクスチャ、色などに大きなモダリティ差が存在し、このクロスモダリティマッチングが大きな課題となっています。 従来の...

局所アフィンコンセンサスを用いたグラフクラスタリングによる特徴マッチング

グラフクラスタリングに基づく特徴マッチングの研究:局所アフィンコンセンサスの実現と応用 学術的背景と研究動機 特徴マッチングは、コンピュータビジョン分野における基盤的な問題であり、3次元再構成、画像検索、画像登録、SLAM(Simultaneous Localization and Mapping)など、多くのタスクにおいて重要な役割を果たしています。しかし、実際の応用においては、特徴マッチングはノイズ、外れ値(アウトライア)、および様々な画像変換の影響を受け、正確な対応関係を構築することが困難です。グラフモデルに基づく現在の特徴マッチング手法は、その強力な構造表現能力により、これらの問題をある程度解決しますが、以下の課題が残されています: グラフマッチング問題は一般にNP困難であり、計算複...

手順認識に向けた弱教師あり協調手順整列フレームワークの研究

弱教師あり協調手順整列フレームワーク:手順動画の相関学習への応用と評価 近年、動画分析分野の急速な発展に伴い、指示動画はその目的指向の特性と人間の学習プロセスとの内在的な関連性により、研究者の関心を集めています。一般動画と比較して、指示動画には複数の細かな手順が含まれ、これらの手順は異なる期間と時間的配置を持ち、より複雑な手順構造を形成します。本研究では、手順動画における手順認識型の相関学習を実現するために、弱教師あり協調手順整列(Collaborative Procedure Alignment, CPA)というフレームワークを提案しました。このフレームワークの主な特長は、高価な手順レベルのアノテーションに依存せず、動画間の内部相関性を利用して手順情報を協調的に抽出し、その手順一致性を定量...

野外でSAMを用いて新しい種を検出する方法

研究論文レポート:SAM を活用したオープンワールド物体検出フレームワーク 背景 エコシステムのモニタリングがますます重要になる中、野生動植物や植物群のモニタリングは、生態系保全や農業発展の鍵となる手段となっています。このようなモニタリングには、個体数の推定、種の識別、行動研究、植物の病害や多様性の分析が含まれます。しかし、従来のクローズドワールド物体検出モデルは、単一種のラベル付きデータに基づいてトレーニングされるため、新しい種への適応が難しいという課題があります。 本研究では、データの不足やモデルの新種適応能力の制限といった課題に焦点を当て、アメリカ・イリノイ大学アーバナシャンペーン校のGarvita Allabadi、Ana Lucic、Yu-Xiong Wang、Vikram Adv...

MassiveFold:最適化および並列化された大規模サンプリングでAlphaFoldの隠れた可能性を明らかにする

MassiveFold:AlphaFoldの潜在能力を最適化と並列化で引き出す 背景と研究課題 タンパク質構造予測は生命科学において重要な研究分野であり、分子生物学の基本的なメカニズムを解明するために不可欠です。近年、DeepMindによるAlphaFoldはこの分野に革命をもたらし、単一タンパク質鎖構造の予測において卓越した性能を発揮し、タンパク質科学研究の基盤となっています。しかし、研究の進展に伴い、AlphaFoldは複雑なタンパク質複合体や抗原-抗体相互作用といった特定のケースで、計算時間が長いことやGPUリソースの高い要求といった課題に直面しています。また、予測精度を向上させるためにリサイクル回数やサンプリング密度を増やす方法もあるものの、これらはさらなる計算負担を招いています。 ...