拡散モデルに基づく特徴増強を用いた全スライド画像における多インスタンス学習

拡散モデルに基づく特徴拡張:全視野病理画像における多数例学習の新手法 学術的背景と研究の動機 計算病理学(computational pathology)の分野では、全視野スライド画像(Whole Slide Images, WSIs)の効果的な分析方法が現在の研究課題として注目されています。WSIsは超高解像度の画像であり、広範囲な視野を持ち、がん診断に広く利用されています。しかし、ラベル付きデータの不足や巨大な画像データがもつ計算負荷の問題から、WSIの自動解析における深層学習手法、特に多数例学習(Multiple Instance Learning, MIL)には多くの課題があります。 MILは典型的な弱教師あり学習手法であり、WSI全体を「バッグ」に見立て、その中の小領域(パッチ)を...

多目的進化フレームワークによる高次有向コミュニティ検出

高階指向性コミュニティ検出における多目的進化フレームワーク 背景と研究の動機 複雑ネットワーク科学の分野において、コミュニティ構造はネットワーク研究の重要な特性の一つです。この構造は、ソーシャルネットワーク、生物学的ネットワーク、交通ネットワークなど、多くの実世界のネットワークに広く存在します。コミュニティ検出技術は、ネットワークのトポロジー属性と機能特性を効果的に明らかにすることで、ネットワーク行動のメカニズムの理解を深めることを可能にします。 現在、多くの従来型コミュニティ検出手法は、低階のノードおよびエッジ接続パターンに依存しています。しかし、研究によりネットワーク内の高階特性、すなわち「モチーフ」(Motif)と呼ばれる繰り返し現れる小さな部分構造が、ネットワークのトポロジー形態と機...

水平フェデレーテッドラーニングのためのコスト効率の良い特徴選択

水平フェデレーション学習における効果的な特徴選択の新しいアプローチ 近年、フェデレーション学習(Federated Learning, FL)はデータプライバシー保護型の分散機械学習手法として注目を集めています。複数のクライアント間でモデルを協調的に学習する際に情報共有が必要とされる一方で、クライアントはローカルデータを一切共有しないため、全体モデルの性能を保証する新しいアプローチが求められています。特に、水平フェデレーション学習(Horizontal Federated Learning, HFL)では、全てのクライアントが同じ特徴空間を共有しますが、個々のサンプルデータは異なるため、大量の冗長特徴や次元性の呪い(Curse of Dimensionality)によりモデルの性能と学習効率...

情報制約環境における自己モデルフリー学習と外部報酬学習の比較

以下は、2024年12月に発表されたPrachi Pratyusha Sahoo(IEEE学生会員)とKyriakos G. Vamvoudakis(IEEEシニア会員)による「情報制約された環境における自モデル不要学習と外部報酬付き学習の比較」という論文についてのレポートです。本研究では、報酬信号の喪失が発生した際、最適かつ安定したポリシーを生成するための新しい強化学習のフレームワークを提案しています。このレポートでは、論文全体を要約し、フレームワークの技術的詳細、理論的成果、シミュレーション実験および応用の意義について説明します。 背景と研究動機 近年、ネットワーク物理システム(Cyber-Physical Systems, CPS)の進化は、人工知能(AI)と統合されることで、より自律...

時空間グラフに基づくスマートグリッドにおける敵対的偽データ注入回避攻撃の生成と検出

時空間グラフベースのスマートグリッドにおける対抗的虚偽データ注入回避攻撃の生成と検出 背景 現代のスマートグリッドは、ネットワーク化されたサイバーフィジカルシステム(Cyber-Physical Systems, CPS)の一例であり、複数のコンポーネント間で大量のデータを交換する必要があるため、さまざまな安全リスクにさらされています。その中で、虚偽データ注入攻撃(False Data Injection Attacks, FDIAs)は、センサーのデータを改ざんすることで大きな注目を集めています。攻撃者はこれらの虚偽データを利用して、従来の異常データ検出システム(Bad Data Detection, BDD)をすり抜けることが可能であり、不適切な運用判断を引き起こし、最悪の場合システムの...

不均衡故障診断のための簡略化カーネルベースのコストセンシティブ広域学習システム

簡易化されたカーネルベースのコストセンシティブ広域学習システム(SKCSBLS)による不均衡データにおける故障診断の研究レポート 研究背景と重要性 Industry 4.0 の進展により、知的製造はますます産業ビッグデータ分析に依存するようになりました。機器運行データから重要な情報を抽出することで、設備の健康管理の有効性を高め、企業の生産性の安全性と効率を向上させることができます。しかし、実際の産業応用において、不均衡データは知的製造分野における故障診断に大きな課題をもたらします。多くの場合、機器運行データでは正常状態のデータが大半を占め、故障データは少ない傾向があります。このような不均衡なカテゴリ分布により、モデルの予測精度が低下し、少数カテゴリ(故障カテゴリ)の識別が困難になります。 現...

WienerおよびPoissonノイズを伴う確率的マルコフジャンプシステムの最適制御:2つの強化学習アプローチ

WienerおよびPoissonノイズを含む確率Markovジャンプシステムの最適制御:2つの強化学習アプローチ 学術的背景 現代の制御理論において、最適制御は非常に重要な研究領域の一つであり、その目標は、動的システムに対して費用関数を最小化する最適制御戦略を設計することです。確率システムに関して、従来の最適制御手法は通常、システムモデルの完全な情報を必要としますが、この点で現実の適用において大きな限界があります。近年、モデルに依存しない手法としての強化学習(Reinforcement Learning, RL)が、最適制御問題を解決する重要なツールとして注目されています。RLはデータから直接学習することで、最適値関数と最適ポリシーを取得し、ポリシーイテレーション(Policy Iterat...

リアルタイムニューラルネットワークを用いたプログラマブルなサウンドバブルを作成するインテリジェントヘッドセットシステム

「音響バブル」と次世代耳装着型デバイス:リアルタイムニューラルネットワークを基盤とした革新研究 日常生活の中で、騒音や複雑な音響環境は、特に混雑した場面(例:レストラン、会議室、飛行機内)において会話の明確な認識を難しくしています。従来のノイズキャンセリングヘッドホンは、環境音をある程度抑制することはできますが、音源の距離を識別したり、特定音源の位置に基づいた正確な音場形成はできません。この課題に対処するため、ワシントン大学Paul G. Allenコンピュータサイエンス&エンジニアリング学部、マイクロソフト、そしてAssemblyAIのチームが重要な研究を行いました。同チームは「音響バブル」(Sound Bubbles) を生成可能なスマート耳装着型デバイスを開発し、マルチチャネルマイクロ...

AIの説明タイプが医師の診断性能とAIへの信頼に影響を与える

人工知能(AI)説明タイプが医師の診断パフォーマンスと信頼に及ぼす影響 学術的背景 近年、人工知能(Artificial Intelligence, AI)は、医療および放射線学の診断システムにおいて急速に発展しており、特に過剰な負担を抱える医療提供者を支援することで、患者ケアの改善に貢献する可能性を示しています。2022年までに、米国食品医薬品局(FDA)は190の放射線学AIソフトウェアプログラムを承認しており、その承認率は年々上昇しています。しかし、概念の証明から実際の臨床応用までの間には大きな隔たりが存在します。このギャップを埋めるためには、AIの助言に対する適切な信頼を育むことが極めて重要です。高い精度を持つAIシステムは、実際の臨床環境において医師の診断能力と患者の結果を向上させ...

深層強化学習による液体レンズ制御の光学顕微鏡精密オートフォーカス

深層強化学習を用いた液体レンズ顕微鏡の精密自動焦点技術 学術的背景 顕微鏡イメージングは、科学研究、生物医学研究、および工学アプリケーションにおいて重要な役割を果たしています。しかし、従来の顕微鏡とその自動焦点技術は、システムの小型化と迅速で精密な焦点調整を実現する上で、ハードウェアの制約とソフトウェアの速度の遅さに直面しています。従来の顕微鏡は通常、複数の固定焦点レンズと機械構造を組み合わせており、拡大や焦点調整などのイメージング機能を実現していますが、これにより装置が大きく、焦点調整が遅く、狭い空間での迅速な操作が困難です。液体レンズ(liquid lens)は、機械部品がなく、電気信号を調整することで焦点を合わせることができるため、小型、高速応答、低コストといった利点を持ち、これらの問...