クランピングは反強誘電体薄膜における電気機械的応答を強化する

クリップによる反強誘電薄膜電動機の電応答強化に関する研究 背景紹介 反強誘電薄膜材料は、微小/ナノメートルサイズの電気機械システムにおける潜在的な応用で広く注目を集めています。このようなシステムは、高い電気機械応答を持つ材料を要求しており、電場を加えることで顕著な電気機械変形を生み出します。しかし、従来の電気機械材料(強誘電材料や弛緩強誘電材料など)は、その厚さがサブミクロンレベルに縮小すると、応答が著しく低下します。これは主に、基板の機械的クリップ効果が材料の分極の回転と格子変形を制限するためです。 この制限を克服するために、研究者たちは非伝統的な方法を提案しました。すなわち、電場によって誘導される反強誘電-強誘電相変化と基板の拘束の結合を利用し、反強誘電薄膜の顕著な電気機械応答を実現しま...

非対称制約ゼロサムゲームのためのニューラルクリティック技術を統合した高度な最適追跡

学術報告:先進最適追跡と神経ネットワーク評価技術の統合による非対称制約ゼロサムゲームの研究 背景と研究課題 現代の制御分野において、ゲーム理論は、少なくとも二人のプレイヤーの相互決定問題を含む、知的意思決定者間の競争と協力を研究する数学モデルである。近年、微分ゲームは制御分野でますます注目を集めている。複雑な外乱システムの最適制御問題に直面する際、通常これをゼロサムゲーム(Zero-Sum Game, ZSG)と見なす。システムの制御問題が異なる制御戦略を含み、外乱がない場合、非ゼロサムゲーム(Non-ZSG)と呼ばれる。しかし、実際のシステムには様々な外乱が存在するため、外乱がシステム性能に与える影響を軽減するために、ZSG問題をさらに考慮することが非常に重要である。 特に連続時間(Con...

構造強化型原型整列による教師なしクロスドメインノード分類

構造強化の原型アライメントによる教師なしドメイン適応ノード分類 序論 現代情報技術の発展に伴い、グラフニューラルネットワーク(Graph Neural Networks、GNNs)は複雑なネットワークのノード分類タスクにおいて顕著な成功を収めています。しかし、その一つの大きな課題は大量の高品質なラベルデータを必要とすることです。これはグラフ構造データに対して取得コストが高く、時間もかかります。したがって、豊富なラベルがあるグラフ(ソースドメイン)から知識を完全にラベルのないグラフ(ターゲットドメイン)に移す方法が重要な問題となっています。 研究背景と目的 著者のチームは浙江大学計算機科学学院、浙江省サービスロボット重点実験室、およびシンガポール国立大学計算機科学学院から来ています。彼らは構造...

二段階のカテゴリ整合に基づく教師なしドメイン適応セグメンテーションアルゴリズム

二段階のカテゴリ整合に基づく教師なしドメイン適応セグメンテーションアルゴリズム

语義セグメンテーションは画像内の各ピクセルに対してクラスラベルを予測することを目的としており(Liu et al., 2021; Wang et al., 2021)、シーンの理解、医療画像解析、自動運転、地理情報システム、拡張現実などに広く応用されています(Strudel et al., 2021; Sun et al., 2023)。深層神経ネットワークの発展により、セグメンテーションタスクの性能が大幅に向上しましたが(Chen et al., 2014; Guan et al., 2021; Zhao et al., 2017)、これらの進歩はモデルの訓練に大量のピクセルレベルのアノテーションデータを必要とし、これらのデータの取得は現実の場面では高コストです(Jiang et al.,...

プロトタイプベースのサンプル加重蒸留統一フレームワークが欠落モダリティ感情分析に適応

プロトタイプベースのサンプル加重蒸留統一フレームワークが欠落モダリティ感情分析に適応

プロトタイプに基づくサンプル加重ディスティレーション統一フレームワークの欠損モダリティ感情分析への応用 研究背景 感情分析は自然言語処理(NLP)における重要な分野であり、ソーシャルメディアプラットフォームの発展と共に、人々は短いビデオクリップを通じて感情を表現する傾向が強まっています。これによりマルチモーダルデータが急速に増加しています。しかし、現実生活ではモダリティ欠損の状況がよく発生します。たとえば、音声が失われたり、カメラが遮られたり、音声の転記ミスなどが原因です。このような状況では、欠損モダリティの感情分析が重要であり、かつ困難な課題となります。マルチモーダルの異質性は、すべてのモダリティをマルチモーダルネットワーク上で同じ目標に最適化しようとするときに、特にモダリティ欠損の場合に...

効率的なテンソル分解に基づくフィルタプルーニング

背景介紹 ネットワークプルーニング(Network Pruning)は、効率的な畳み込みニューラルネットワーク(CNNs)モデルを設計するための重要な技術です。メモリ使用量と計算要求を削減しつつ、全体的なパフォーマンスを維持または向上させることで、リソース制限のあるデバイス(携帯電話や組み込みシステムなど)でのCNNsの展開が実現可能になります。現在の仮定は、多くのモデルパラメータが過剰であり、大量の不必要または冗長なパラメータを含んでいるというもので、これらの冗長パラメータを削除することで、より小さくて効率的なモデルを生成できます。これはリソース制限のあるデバイスにだけでなく、場合によってはモデルの汎化能力を向上させることもあります。 既存のプルーニング手法の中で、フィルタープルーニング(...

複数の変数時系列異常検出のための二重メモリーモジュールを備えた堅牢なマルチスケール特徴抽出フレームワーク

複数の変数時系列異常検出のための二重メモリーモジュールを備えた堅牢なマルチスケール特徴抽出フレームワーク

深層学習技術の急速な発展に伴い、データマイニングと人工知能トレーニング技術の実際のアプリケーションにおける重要性が日々増しています。特に多変量時系列異常検出の分野では、既存の手法は優れた性能を示していますが、ノイズや汚染されたデータに直面した際には、依然として顕著な問題が存在します。これに基づき、本論文では、上記の課題を解決するための二重メモリモジュールを持つマルチスケール特徴抽出フレームワークを提案しています。 研究背景 多変量時系列(Multivariate Time Series, MTS)データは通常、IoT(モノのインターネット)アプリケーションにおける複数のセンサーのリアルタイムの動作状態を含みます。これらのデータを効果的に分析することで、隠れた情報を明らかにし、異常状況を予測し...

間欠的なランダム摂動を持つ結合ニューラルネットワークの高速同期制御と暗号化-復号化のためのアプリケーション

結合されたニューラルネットワークにおける断続的ランダム摂動下での高速同期制御および暗号化・復号化の応用 一、背景および研究動機 近年、ニューラルネットワークはデータ分類、画像認識、組合せ最適化問題など様々な分野で広く応用されています。ニューラルネットワークの構造と性能に関して、決定論的ニューラルネットワークとランダム性ニューラルネットワークに分けることができます。多くの研究は、ノイズ摂動を加えたランダムニューラルネットワークが決定論的ニューラルネットワークよりも優れた動的特性を示すことを明らかにしています。これは、ランダム摂動を持つネットワークを構築することにより、実際のニューラルネットワークのモデルをよりリアルに模擬することができるためです。しかし、現在の多くのニューラルネットワークの研究...

制約付き非ゼロ和ゲームのための適応サンプリング人工-実際制御

制約システムの非ゼロ和ゲームにおける適応サンプリング人工・実際制御の応用 背景 現代の工業および研究分野におけるスマート技術と制御システムの急速な発展により、従来の制御方法がシステムの安定性を保証し、エネルギー消費を最小化するという厳しい要求を満たすことが困難になっています。実際のシステムは通常非常に複雑で、少なくとも2つの制御ユニットを含んでおり、コンポーネント間には複雑な競争と協力の関係があります。このような状況では、設計された制御スキームは単一のコントローラーの利益最大化だけでなく、全体の最適化も実現する必要があります。このような問題は通常、非ゼロ和ゲーム(Non-Zero-Sum Games,NZSG)とみなされ、多物理入力の制約条件下でシステムのカップリングダイナミクスを処理するこ...

テキスト認識型クロスモーダルコントラストデザンタングリングによるマルチグレインビジュアルピボットガイドのマルチモーダルニューラルマシントランスレーション

テキスト認識型クロスモーダルコントラストデザンタングリングによるマルチグレインビジュアルピボットガイドのマルチモーダルニューラルマシントランスレーション

多尺度視覚中枢ガイドの多モーダル神経機械翻訳:テキスト認識のクロスモーダル対比デカップリング 学術背景 多モーダル神経機械翻訳(Multi-Modal Neural Machine Translation, MNMT)は、言語に依存しない視覚情報をテキストに導入して機械翻訳の性能を向上させることを目指しています。しかし、画像とテキストはモーダル間で顕著な差異があるため、両者間では避けられない意味の不一致が発生します。これらの問題を解決するための目標は、分解された多尺度視覚情報をクロスランゲージ中枢として使用することにより、異なる言語間のアライメントを向上させ、MNMTのパフォーマンスを改善することです。 論文情報 この論文は朱俊俊、蘇瑞および葉俊杰などの研究者によって執筆され、著者はそれぞれ...