プロトタイプベースのサンプル加重蒸留統一フレームワークが欠落モダリティ感情分析に適応

プロトタイプベースのサンプル加重蒸留統一フレームワークが欠落モダリティ感情分析に適応

プロトタイプに基づくサンプル加重ディスティレーション統一フレームワークの欠損モダリティ感情分析への応用 研究背景 感情分析は自然言語処理(NLP)における重要な分野であり、ソーシャルメディアプラットフォームの発展と共に、人々は短いビデオクリップを通じて感情を表現する傾向が強まっています。これによりマルチモーダルデータが急速に増加しています。しかし、現実生活ではモダリティ欠損の状況がよく発生します。たとえば、音声が失われたり、カメラが遮られたり、音声の転記ミスなどが原因です。このような状況では、欠損モダリティの感情分析が重要であり、かつ困難な課題となります。マルチモーダルの異質性は、すべてのモダリティをマルチモーダルネットワーク上で同じ目標に最適化しようとするときに、特にモダリティ欠損の場合に...

効率的なテンソル分解に基づくフィルタプルーニング

背景介紹 ネットワークプルーニング(Network Pruning)は、効率的な畳み込みニューラルネットワーク(CNNs)モデルを設計するための重要な技術です。メモリ使用量と計算要求を削減しつつ、全体的なパフォーマンスを維持または向上させることで、リソース制限のあるデバイス(携帯電話や組み込みシステムなど)でのCNNsの展開が実現可能になります。現在の仮定は、多くのモデルパラメータが過剰であり、大量の不必要または冗長なパラメータを含んでいるというもので、これらの冗長パラメータを削除することで、より小さくて効率的なモデルを生成できます。これはリソース制限のあるデバイスにだけでなく、場合によってはモデルの汎化能力を向上させることもあります。 既存のプルーニング手法の中で、フィルタープルーニング(...

複数の変数時系列異常検出のための二重メモリーモジュールを備えた堅牢なマルチスケール特徴抽出フレームワーク

複数の変数時系列異常検出のための二重メモリーモジュールを備えた堅牢なマルチスケール特徴抽出フレームワーク

深層学習技術の急速な発展に伴い、データマイニングと人工知能トレーニング技術の実際のアプリケーションにおける重要性が日々増しています。特に多変量時系列異常検出の分野では、既存の手法は優れた性能を示していますが、ノイズや汚染されたデータに直面した際には、依然として顕著な問題が存在します。これに基づき、本論文では、上記の課題を解決するための二重メモリモジュールを持つマルチスケール特徴抽出フレームワークを提案しています。 研究背景 多変量時系列(Multivariate Time Series, MTS)データは通常、IoT(モノのインターネット)アプリケーションにおける複数のセンサーのリアルタイムの動作状態を含みます。これらのデータを効果的に分析することで、隠れた情報を明らかにし、異常状況を予測し...

間欠的なランダム摂動を持つ結合ニューラルネットワークの高速同期制御と暗号化-復号化のためのアプリケーション

結合されたニューラルネットワークにおける断続的ランダム摂動下での高速同期制御および暗号化・復号化の応用 一、背景および研究動機 近年、ニューラルネットワークはデータ分類、画像認識、組合せ最適化問題など様々な分野で広く応用されています。ニューラルネットワークの構造と性能に関して、決定論的ニューラルネットワークとランダム性ニューラルネットワークに分けることができます。多くの研究は、ノイズ摂動を加えたランダムニューラルネットワークが決定論的ニューラルネットワークよりも優れた動的特性を示すことを明らかにしています。これは、ランダム摂動を持つネットワークを構築することにより、実際のニューラルネットワークのモデルをよりリアルに模擬することができるためです。しかし、現在の多くのニューラルネットワークの研究...

制約付き非ゼロ和ゲームのための適応サンプリング人工-実際制御

制約システムの非ゼロ和ゲームにおける適応サンプリング人工・実際制御の応用 背景 現代の工業および研究分野におけるスマート技術と制御システムの急速な発展により、従来の制御方法がシステムの安定性を保証し、エネルギー消費を最小化するという厳しい要求を満たすことが困難になっています。実際のシステムは通常非常に複雑で、少なくとも2つの制御ユニットを含んでおり、コンポーネント間には複雑な競争と協力の関係があります。このような状況では、設計された制御スキームは単一のコントローラーの利益最大化だけでなく、全体の最適化も実現する必要があります。このような問題は通常、非ゼロ和ゲーム(Non-Zero-Sum Games,NZSG)とみなされ、多物理入力の制約条件下でシステムのカップリングダイナミクスを処理するこ...

テキスト認識型クロスモーダルコントラストデザンタングリングによるマルチグレインビジュアルピボットガイドのマルチモーダルニューラルマシントランスレーション

テキスト認識型クロスモーダルコントラストデザンタングリングによるマルチグレインビジュアルピボットガイドのマルチモーダルニューラルマシントランスレーション

多尺度視覚中枢ガイドの多モーダル神経機械翻訳:テキスト認識のクロスモーダル対比デカップリング 学術背景 多モーダル神経機械翻訳(Multi-Modal Neural Machine Translation, MNMT)は、言語に依存しない視覚情報をテキストに導入して機械翻訳の性能を向上させることを目指しています。しかし、画像とテキストはモーダル間で顕著な差異があるため、両者間では避けられない意味の不一致が発生します。これらの問題を解決するための目標は、分解された多尺度視覚情報をクロスランゲージ中枢として使用することにより、異なる言語間のアライメントを向上させ、MNMTのパフォーマンスを改善することです。 論文情報 この論文は朱俊俊、蘇瑞および葉俊杰などの研究者によって執筆され、著者はそれぞれ...

自律型ドローンのための完全ニューロモルフィックビジョンおよび制御

自律型ドローンのための完全ニューロモルフィックビジョンおよび制御

完全なニューロモルフィックビジョンとコントロールを持つ自律飛行体 背景と研究動機 過去10年間で、ディープニューラルネットワーク(ANNs)は人工知能分野で大きな進展を遂げ、とりわけ視覚処理において顕著な成果を上げました。しかし、これらの高度な視覚処理技術は高精度を実現する一方で、多大な計算リソースとエネルギーを消費するため、小型飛行ロボットなどリソースが限られた場合には応用が難しいです。 この問題に対処するために、ニューロモルフィックハードウェアは生物の脳のスパースで非同期的な特性を模倣することで、より効率的な認識と処理能力を実現しました。ロボット分野では、ニューロモルフィックハードウェアに含まれるイベント駆動カメラとスパイキングニューラルネットワーク(SNNs)が低遅延・低エネルギー消費...

深層強化学習による二足歩行ロボットの敏捷なサッカースキルの学習

深層強化学習による二足歩行ロボットの敏捷なサッカースキルの学習

深層強化学習で二足ロボットに敏捷なサッカースキルを付与 背景説明 エージェントが物理世界で敏捷性、柔軟性、理解力を示すことは、人工知能(Artificial Intelligence, AI)研究の長年の目標の一つです。しかし、動物や人間は複雑な身体の動きを流暢にこなすだけでなく、環境を感知し理解し、身体を使って世界で複雑な目標を達成することができます。歴史的に、複雑な運動能力を持つ知的な身体エージェントを作ろうとする試みは長く続いており、それはシミュレーション環境でも現実の環境でも同様です。近年の技術の急速な進歩、特に学習に基づく方法論の進展により、深層強化学習(Deep Reinforcement Learning, Deep RL)が、シミュレーションキャラクターでも物理ロボットでも、...

車輪付き脚ロボットのための堅牢な自律ナビゲーションと移動学習

車輪付き脚ロボットのための堅牢な自律ナビゲーションと移動学習

自律的に移動できる車輪脚ロボット 背景紹介 都市化の進展に伴い、サプライチェーン物流、特にラストワンマイルの配送が大きな課題となっています。交通の混雑が増加し、より迅速な配送サービスが求められる中、特に屋内や街路での複雑なルートは配送にとって解決し難い問題となっています。従来の車輪型ロボットは複雑な障害物を越えるのが難しく、脚部システムだけでは必要な速度と効率を達成することはできません。例えば、ANYmalロボットは一定の移動能力を持っているものの、その最大走行速度は平均的な歩行速度の半分に過ぎず、バッテリーの持続時間も限られています。したがって、平坦な地面で効率的に動き、障害物を乗り越えることができるロボットシステムを開発することが研究の主要な方向となっています。 本稿で主要に研究している...

三次元空間における時空間認識のための立体人工集眼

三次元空間における時空間認識のための立体人工集眼

立体人工复眼用于三维空间的时空感知 本研究文章发表在2024年5月15日的《Science Robotics》期刊上,题为“立体人工复眼用于三维空间的时空感知(Stereoscopic Artificial Compound Eyes for Spatiotemporal Perception in Three-Dimensional Space)”,第一作者为Byungjoon Bae,指导作者为Kyusang Lee。研究团队主要来自University of Virginia的电气与计算机工程系和材料科学与工程系。 研究背景 在自然界中,节肢动物(arthropods)的复眼是非常有效的生物视觉系统,具备广阔的视野(Field of View, FOV)和高运动敏感度,而祷蛾(mant...