基于EEG信号检测重度抑郁症的图卷积Transformer网络GCTNet

GCTNet:基于EEG信号检测重度抑郁症的图卷积Transformer网络 研究背景 重度抑郁症(Major Depressive Disorder, MDD)是一种普遍的精神疾病,其特征是显著且持续的低落情绪,全球约有超过3.5亿人受到影响。MDD是导致自杀的主要原因之一,每年约有80万人因此丧生。当前MDD的诊断主要依赖于患者的自我报告和临床医生的专业判断。然而,诊断过程的主观性可能会导致不同医生之间的一致性较低,从而可能产生不准确的诊断。研究发现,被诊断为MDD的一般医生的正确率仅为47.3%。因此,探索客观可靠的生理指标,并采用有效的方法及时识别MDD,对于促进早期诊断和干预至关重要。 论文来源 本论文由Beijing Advanced Innovation Center for ...

表面肌电信号的拓扑结构:利用黎曼流形解码手部手势

表面肌电信号的拓扑结构:利用黎曼流形解码手部手势 本论文由Harshavardhana T. Gowda(加利福尼亚大学戴维斯分校电子与计算机工程系)和Lee M. Miller(加利福尼亚大学戴维斯分校心理与脑科学中心、神经生理学和行为系、耳鼻喉科-头颈外科系)联合撰写。该论文发表于《Journal of Neural Engineering》。 研究背景 表面肌电图(sEMG)信号通过在皮肤表面放置传感器来非侵入性地记录来自运动单元(MU)激活的电信号。这些信号在上肢手势解码中的应用,对于截肢者的康复、人造肢体增强、计算机手势控制以及虚拟/增强现实等领域具有重要意义。然而,sEMG信号的实际应用受到了许多因素的限制,比如皮下组织的厚度、依赖于电极位置的信号变异性等。因此,如何解码和区分不...

基于高频稳态视觉诱发场的视觉脑机接口

基于高频稳态视觉诱发场的视觉脑机接口

基于高频稳态视觉诱发场的视觉脑机接口 背景介绍 脑机接口(Brain-Computer Interface, BCI)技术通过解码特定的脑活动信号,使用户能够控制机器。尽管侵入性BCI在捕获高质量脑信号方面表现出色,但其应用主要局限于临床环境。而非侵入性方法,如脑电图(Electroencephalography, EEG),则为广泛应用BCI提供了更具可行性的途径。然而,由于脑脊液和颅骨的影响,EEG信号在传播过程中会变得非常微弱,且颅骨的差异性和各向异性导电性让定位EEG信号位置变得更加困难。 磁源成像(Magnetoencephalography, MEG)是一种非侵入性成像脑活动的方法,它在捕捉精细空间信息方面优于EEG。这种优势主要源自磁通量不会像电流那样受到衰减。然而,传统MEG...

低频正弦磁场诱导的人类磁磷光感知的阈值和机制

电感磷光感知的阈值与机制 背景介绍 电磁场(Magnetic Field,简称MF)对人类身体的影响一直是科学研究的热点。极低频磁场(Extremely Low-Frequency Magnetic Field,简称ELF-MF)在日常生活中广泛存在,主要来源于电力线(50/60 Hz)和家庭电器。这些磁场在人体内会感应出电场和电流,进而可能调节大脑功能。一个特定现象——电磁磷光(Magnetophosphene),即由于磁场诱发的闪烁视觉感知,是国际电磁场暴露指导方针的基础之一。 电磁磷光现象早在1896年由法国医生Jacques-Arsène d’Arsonval首次观察到,该现象后来在一些小型非重复性研究中得到验证。近几十年来,关于电磁磷光的研究却相对较少,尤其是在家庭频率(即50 H...

在神经形态硬件上使用类脑计算原理的学习逆动力学

在神经形态硬件上使用类脑计算原理的学习逆动力学 背景与研究动机 在现代机器人领域中,实现自主人工代理的低延迟神经形态处理系统具有巨大潜力。但目前硬件基础的可变性和低精度对其稳定和可靠性能的实现提出了严峻挑战。为了应对这些挑战,研究者们采用基于大脑启发的计算原理(computational primitives),如三元峰时间依赖可塑性(triplet spike-timing dependent plasticity)、基于基底神经节的去抑制机制以及合作竞争网络,并将这些技术应用于运动控制。 本研究通过展示一个使用混合信号神经形态处理器实现的硬件脉冲神经网络(spiking neural network,SNN)在线学习两关节机器人臂的逆运动学的示例,证明了这一方法的可行性。最终系统能够使用...

小型机器人的磁滞振荡定位

详解小规模磁振荡定位新方法及其在机器人技术中的应用 研究背景及动机 微型机器人在医学领域显示出了巨大的潜力,特别是在微创手术、靶向药物递送和体内传感等方面。近期,通过无线动力和驱动纳米至毫米规模机器人在生物环境中取得了显著进展。然而,这些微型机器人的实时定位,特别是在深层生物组织内的定位,仍然是一个亟待解决的技术难题。传统的医学成像技术,如磁共振成像(MRI)、计算机断层扫描(CT)和正电子发射断层扫描(PET),虽然在空间分辨率上具有优势,但由于刷新率低或放射性问题,不适合持续跟踪移动机器人。此外,现有的静态磁性定位方法,在某些场景中最高可以实现五自由度(DOF)的定位,但由于磁轴周围的旋转对称性而无法实现完整的六自由度定位。因此,开发一种能够在深层生物组织内实现微米级精度、六自由度的实时...

半导体-压电异质结构中巨大的电子介导声子非线性

半导体-压电异质结构中巨大的电子介导声子非线性

半导体-压电异质结构中巨大的电子介导声子非线性 现代科学技术中,信息处理的效率和确定性是决定其应用潜力的关键。光学频率上的非线性光子相互作用已经在经典和量子信息处理上展示了巨大的突破。而在射频范围内,非线性声子相互作用也同样有潜力带来革命性变化。本文通过异质集成高迁移率半导体材料,展示了一种能够有效增强确定性非线性声子相互作用的方法。 研究背景 作者开展这项研究的原因在于目前非线性声子相互作用的材料非常有限,不能通过材料本质上的声子非线性实现高效率的频率转换。尽管一些材料(例如铌酸锂)已经展示了一些电-声效应和非线性压电效应,实现了三波和四波混频过程,但仍未达到高效的频率转换。因此,该研究旨在通过半导体材料的引入,增强声子-电子混合效应,提升非线性声子相互作用的强度和效率。 研究来源和作者背...

夹持增强了反铁电薄膜中的机电响应

基于夹持的反铁电薄膜电机电响应增强研究 背景介绍 反铁电薄膜材料在微/纳米机电系统中的潜在应用已经引起了广泛关注。这类系统要求材料具有高机电响应,可以在施加电场时产生显著的机电应变。然而,传统机电材料(如铁电材料和弛豫铁电材料)当其厚度缩小到亚微米级时,反馈响应会显著下降,主要原因是衬底的机械夹持效应限制了材料的极化旋转和晶格变形。 为了克服这一局限,研究者们提出了一种非传统方法,通过电场诱导的反铁电到铁电相变和衬底约束的耦合,实现了反铁电薄膜的显著机电响应。相关研究观察到,氧八面体的去倾斜与所有维度下晶格体积的扩展相符,同时平面内的夹持进一步增强了平面外的扩展。 研究来源 本文由来自多所知名机构的研究人员共同撰写,包括University of California, Berkeley, ...

基于自适应集成分解和跨模态注意力融合的电网故障诊断框架

基于自适应集成分解与跨模态注意力融合的电网故障诊断框架 研究背景 随着现代电力系统规模的不断扩大和复杂化,电网的稳定运行面临着越来越严峻的挑战。电网故障的发生可能由自然灾害、设备故障以及局部电网结构薄弱等多个因素导致。这些故障不仅会影响电力用户的正常工作,还可能导致大面积停电,进而引发重大损失。美国能源信息管理局的数据显示,美国每年平均发生超过500起电网故障事件,影响数百万用户的电力供应。在中国,因电网故障造成的年均电力损失超过百亿人民币。由此可见,快速准确地检测和诊断电网故障类型已成为电力系统研究中的关键课题之一。 研究来源 本文题为“a grid fault diagnosis framework based on adaptive integrated decomposition a...

耦合神经网络间歇性随机扰动下的快速同步控制及加密解密应用

耦合神经网络间歇性随机扰动下的快速同步控制及加密解密应用 一、背景及研究动机 近年来,神经网络被广泛应用于各种领域,包括数据分类、图像识别及组合优化问题等。在神经网络结构和性能方面,可以将其分为确定性神经网络和随机性神经网络。许多研究表明,加入噪声扰动的随机神经网络展示出比确定性神经网络更好的动态特性,即通过构建具有随机扰动的网络,可以更真实地模拟实际神经网络的模型。然而,当前大多数神经网络的研究主要集中在全时扰动模型上,尽管实际生活中更多的是间歇性随机扰动现象。 二、论文来源 这篇名为《Fast synchronization control and application for encryption-decryption of coupled neural networks with ...