自监督学习加速度计数据揭示睡眠与死亡率关联的新见解
自监督学习手腕加速度计数据揭示睡眠与死亡率关联的新见解 在现代社会中,睡眠作为生命必需的基础活动,其重要性不言而喻。通过准确测量和分类睡眠/清醒状态以及不同的睡眠阶段,在临床研究中对睡眠障碍的诊断以及解读消费者设备所提供的运动和心理健康数据都是至关重要的。然而现有的非多导睡眠图(Polysomnography, PSG)睡眠分类技术主要依赖于启发式方法,这些方法常常是在相对较小的样本人群中开发的,存在一定的局限性。因此,本研究的目标是通过腕戴加速度计确定睡眠阶段分类的准确性,并探讨睡眠时长和效率与死亡率之间的关联。 研究背景 由Hang Yuan及其团队(包括Tatiana Plekhanova, Rosemary Walmsley, Amy C. Reynolds, Kathleen J....