通过多任务遗传编程实现带目标偏好的多目标动态灵活车间调度

多目标动态灵活作业车间调度的突破性研究:一种通过多任务学习优化目标偏好遗传规划的创新方法 背景介绍 动态灵活作业车间调度(Dynamic Flexible Job Shop Scheduling, DFJSS)是一个重要的组合优化问题,在制造、仓储等领域的生产过程具有广泛的实际应用。例如,它被用于优化制造过程中的任务分配或仓库的订单拣选工作。该问题的核心是如何在动态环境中,为多个机器和多个作业执行灵活的任务分配和操作排序决策,从而最大化某些效率指标或最小化时间成本。然而,这个问题的复杂性极高,尤其是当任务动态到达或机器发生故障时,传统的优化方法往往面临计算复杂度和实时性不足等问题。 近年来,遗传规划(Genetic Programming, GP)作为一种超启发式方法,被广泛用于为动态灵活作...

NPE-DRL: 一种用于无人机在感知受限环境下规避障碍物的非专家策略增强深度强化学习方法

基于非专家策略强化学习改进无人机视觉受限环境下的避障能力研究 近年来,无人机(Unmanned Aerial Vehicle,UAV)凭借其卓越的机动性和多样化的功能,广泛应用于包裹递送、风险评估和紧急救援等民用领域。然而,随着无人机执行任务的复杂性、范围和时长的增加,其自主导航的难度也显著上升,尤其是在拥挤且高度不确定的环境中实现避障。然而,传统的全球导航方法通常依赖全局信息,难以处理视觉受限条件下的障碍场景。本研究的目的是解决这些场景中的避障问题,提升无人机的实时导航能力。 此外,尽管基于深度强化学习(Deep Reinforcement Learning,DRL)的避障算法通过端到端处理方式表现出色,能够减小计算复杂度并提升适应性和可扩展性,但它们的采样效率偏低,需要大量的样本迭代以实...

通过自适应超球邻近点分布方法优化的神经网络分类器

通过自适应超球邻近点分布方法优化的神经网络分类器

自适应超球神经网络分类器:ASNN研究综述 引言与研究背景 近年来,随着人工智能和深度学习的发展,神经网络(Neural Networks, NNs)被广泛应用于分类任务中。这类任务的本质是通过神经网络建立决策边界,将样本分类到其所属类别。然而,在传统的神经网络分类方法中,嵌入空间(Embedding Space)的扩展性以及样本之间正负对配对(Positive/Negative Pairing)效率不足,一直是妨碍神经网络性能进一步提升的重要问题。具体来说,现有基于对比约束(Pair-wise Constraint-Based, PWCB)的方法主要通过设计对比损失函数(三重损失Triplet Loss、对比损失Contrastive Loss等)和固定的嵌入空间来引导神经网络学习样本的判...

知识概率化在集合蒸馏中的应用:提升目标检测器的准确性和不确定性量化

知识概率化在集成蒸馏中的应用研究 学术背景:研究的意义与问题的提出 近年来,深度神经网络(Deep Neural Networks, DNN)因其卓越的预测能力,在自动驾驶、医疗诊断、气候预测等安全关键领域得到了广泛应用。然而,这些领域对模型的需求不止于高预测精度,更要求模型能够提供可靠的不确定性量化(Uncertainty Quantification)。尤其是在诸如自动驾驶车辆面对雪天等复杂环境时,模型的过高自信可能导致不安全的决策;因此,增强不确定性量化已成为深度学习应用的重要课题之一。 深度集成学习(Deep Ensemble)因其在提升预测精度和不确定性量化能力方面的显著效果,成为近年来的重要研究方向。然而,集成模型由于需要大规模的计算与存储资源,在实际应用中,尤其是资源有限的环境...

基于CORDIC的高效激活函数实现方法,用于FPGA上的RNN加速

RNN高效激活函数实现:CORDIC算法与FPGA硬件加速的突破 背景与研究意义 近年来,随着深度学习技术的迅猛发展,循环神经网络(Recurrent Neural Networks, RNNs)尤其是长短时记忆网络(Long Short-Term Memory, LSTM),在时间序列任务中展现出了强大的能力,例如在自然语言处理(Natural Language Processing, NLP)、语音识别和医学诊断等领域取得了广泛应用。然而,与卷积神经网络(Convolutional Neural Networks, CNNs)相比,RNN模型因其复杂性和大量非线性激活函数需求,导致计算代价显著增加。特别是在资源有限的边缘设备(Edge Devices)中部署RNN模型时,激活函数的实现成...

基于先验驱动的边缘特征增强网络提升小样本语义分割性能

基于先验驱动的边缘特征增强网络提升小样本语义分割性能

提升小样本语义分割的新方法——基于先验的边缘特征增强网络 在人工智能领域,语义分割(semantic segmentation)是计算机视觉中的一项核心技术,其目的是为图像中的每个像素赋予语义类别标签。然而,传统的语义分割方法依赖大量的标注数据进行训练,这在实际应用中局限于标注样本数据不足的场景。例如,医学影像分析和自动驾驶中,需要对少数数据类别进行分割,获取精确的分割结果。在此背景下,小样本语义分割(Few-Shot Semantic Segmentation, 简称FSS)作为一种新兴技术得到了研究者的广泛关注,旨在在少量标注样本的条件下实现高质量的语义分割。 然而,与普通语义分割模型相比,小样本语义分割在目标边界预测的准确性上仍然表现不足。原因在于,当样本极其有限时,模型从查询(que...

基于标签特定特征校准的部分多标签学习方法

部分多标签学习的前沿研究:一种基于标签特异性特征校正的新方法 近年来,部分多标签学习(Partial Multi-Label Learning,PML)逐渐成为机器学习领域的研究热点。随着众包平台的普及,数据标注成本得到显著降低,但随之而来的问题是标注质量的下降——即候选标签集中不可避免地存在一些无关的标签。这些标签噪声不仅增加了学习任务的难度,还可能对模型性能产生误导性影响。因此,研究如何从含噪数据中有效学习,成为目前学术界亟待解决的重要课题。本篇学术报道将聚焦一项在未来学术领域具有重要参考意义的研究,该研究提出了一种名为PASE(Partial Multi-Label Learning via Label-Specific Feature Corrections,基于标签特异性特征校正的...

基于改进生成残差网络的抓取姿态估计新方法:MetaCoorNet

自动化机器人抓取姿态估计领域的新突破——MetaCoorNet网络 学术背景与研究问题 机器人抓取是机器人技术中的一项基础挑战,其核心在于如何使机器人能够与环境互动,完成对象拾取和操控任务。尽管自动化抓取技术在工业制造、家用辅助和零部件组装等领域表现出了巨大潜力,但其应用却面临诸多困难。例如,抓取对象形状、尺寸、材质等的多样性以及环境中的复杂因素(如遮挡和光照变化),都会对抓取算法的稳定性和真实性构成挑战。除外,采集传感器数据噪声和机械手本身复杂的机械设计也为实现高精度的抓取增加了难度。 在这一背景下,抓取姿态估计成为掌控机器人抓取动作的关键技术。抓取姿态估计是一个回归问题,目标是根据视觉输入数据(如RGB或点云图像)预测最适合的抓取点及对应的角度。近年来,随着深度学习技术的快速发展,更多研...

标签分布学习为何在分类中具有更好的泛化性

理解标签分布学习为何在分类中具有更好的泛化性能 背景介绍 在人工智能和机器学习领域,分类问题一直是研究者关注的核心课题之一,随着多标签学习(Multi-label Learning,MLL)和单标签学习(Single-label Learning,SLL)的不断发展,如何有效处理标签之间复杂的关系成为了一项重要挑战。然而,传统的单标签学习模型往往仅关注最相关的标签,而忽略了标签间的模糊性和相关性信息。这种局限性对现实世界中许多复杂任务的解析和解决形成了阻碍。 为了解决这一问题,标签分布学习(Label Distribution Learning,LDL)被提出。与SLL和MLL不同,LDL通过为每个数据实例分配一个标签分布(每个标签分配一个实数值,表示标签的相关程度)来全面刻画实例与标签之间...

基于单片3D IGZO-RRAM-SRAM集成架构实现稳健且高效的计算存储

基于单片集成的三维IGZO-RRAM-SRAM计算存储新架构研究:提高神经网络计算效率的突破 背景与研究动机 随着神经网络(Neural Network, NN)在人工智能领域应用的不断深入,传统计算架构难以满足其在能耗、速度和密度方面的需求。这促使研究者将目光投向计算存储(Compute-In-Memory, CIM)芯片技术。CIM通过将计算单元与存储单元集成在一个架构中,避免大量数据在存储与计算单元间传递的“存储墙”效应,从而显著提高系统效率。已有CIM架构主要基于静态随机存取存储器(Static Random Access Memory, SRAM)、电阻随机存取存储器(Resistive Random Access Memory, RRAM)和氧化铟镓锌(Indium-Galliu...