随机非线性时变系统有限时间稳定性与不稳定性定理的新进展

关于随机非线性时变系统有限时间稳定性和不稳定性定理的新成果 1. 研究背景与意义 稳定性理论是系统理论和工程应用中的核心内容,也是系统分析和综合中最基础的考虑之一。在稳定性理论中,最常用的两个概念是渐近稳定性(asymptotic stability)和有限时间稳定性(finite-time stability)。渐近稳定性描述了系统状态在时间趋于无穷时的行为,而有限时间稳定性则关注系统在有限时间内的瞬态性能。 许多工程问题中,有限时间稳定性相比渐近稳定性显得更为重要,例如在机器人操控的轨迹控制和水下飞行器的姿态控制等桥接性任务中,人们更加注重系统在有限时间内到达期望状态的能力。具有有限时间稳定性的系统不仅表现出更好的鲁棒性,而且具有更快的收敛速度。然而,目前已有的研究在有限时间稳定性方面仍...

BEV-Locator:基于多视角图像的端到端视觉语义定位网络

一项基于多视图图像的端到端视觉语义定位研究 背景与研究意义 随着智能驾驶技术的迅速发展,自动驾驶汽车的精确定位能力成为研究和工业界的热点问题。准确的车辆定位不仅是自动驾驶的核心模块,同时也是高级驾驶辅助系统(ADAS)的重要组成部分。传统的基于视觉定位的方法通常依赖几何模型和复杂的参数调优,但在复杂的场景下,其鲁棒性和大规模部署能力有限。此外,受环境变化(如天气、光照条件等)影响,传统特征提取方法(例如SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)、ORB(方向快速和旋转简要特征)等)在动态环境中表现有限。近年来,带有丰富语义信息的高精度地图(HD Maps, 高精地图)被证明能够增强定位的鲁棒性。然而,如何在多视图图像与语义地图之间实现高效的跨模态匹配,同时避免复杂的几何优化和多阶...

基于卫星助力的6G广域边缘智能:面向远程物联网服务的动态感知任务卸载与资源分配

基于卫星助力的6G广域边缘智能:面向远程物联网服务的动态感知任务卸载与资源分配

卫星支持的6G宽域边缘智能,面向远程物联网服务的动态感知任务卸载与资源分配 背景介绍 随着6G移动通信网络的到来,传统的物联网(IoT,Internet of Things)体系结构正逐渐向集成全球连接与广泛人工智能(AI)能力的智能万物互联(IoE,Internet of Everything)新范式转变。然而,地面网络在覆盖范围上存在局限性,尤其是在复杂地形和偏远地区无法实现全面覆盖。近地轨道(LEO,Low Earth Orbit)卫星的快速技术发展为解决这一问题带来了新的希望。通过非地面网络(NTN,Non-Terrestrial Networks)的支持,LEO卫星能够为全球用户提供无缝连接、大容量通信和高效计算服务,满足远程环境监控、智能农业等应用的需求。 但是,广域物联网应用带...

E-Predictor:Pull Request接受的早期预测方法

早期预测Pull Request接受的研究突破 近年来,开源软件(Open-Source Software, OSS)开发逐渐成为主流的软件开发模式之一,这种模式极大地依赖于开发者之间的协作。而Pull Request(PR)的机制被广泛应用于分布式软件开发中,以提升协作效率。在GitHub等开源平台上,PR允许开发者提交代码变更请求,由项目维护者(管理员)进行代码审查并决定是否将代码合并到主分支中。然而,随着开源项目活跃度的提高,PR的数量急剧增长,这使得管理员的工作负担加重,并且导致PR处理的时间延迟。如何高效地管理和预测PR的接受状态,已成为研究者和开发者关注的热点问题。 基于这一背景,来自浙江大学区块链与数据安全国家重点实验室的Kexing Chen、Lingfeng Bao、Xin...

从复杂网络视角分析iOS应用商店的推荐关系

解析iOS应用商店推荐关系的复杂网络研究 背景介绍 移动应用程序(简称移动App)是现代互联网生态系统中的重要组成部分。然而,随着移动应用数量的爆炸式增长,用户在应用商店中找到所需应用变得越来越困难,同时开发者的应用程序也面临着难以被发现的挑战。为了改善用户的体验,大多数应用商店会根据用户行为或其他算法,提供应用推荐功能。例如,iOS应用商店的“你可能还喜欢”(”You Might Also Like”)推荐机制展示了与某一特定应用相关的其他应用,这形成了一种推荐关系网络。 尽管应用推荐对用户行为和应用程序的市场表现有重大影响,已有的研究对推荐关系网络的深层次特性关注较少。研究者希望通过解析这种推荐网络,了解它与用户行为的关系,并探索如何利用推荐机制改进应用发现过程或优化应用市场监管。本研究...

FedLCS:联邦本地因果结构学习算法

数据隐私保护与因果学习交汇:基于联邦学习的局部因果结构学习突破 随着大数据和人工智能的飞速发展,在医疗、金融等敏感领域中如何在保障数据隐私的条件下高效分析与推断因果关系,正成为学术界和工业界的关键挑战。《Federated Local Causal Structure Learning》(联邦局部因果结构学习)这篇文章直接聚焦于这一重要课题,引入了一种名为FedLCS的算法,设计用于在联邦学习(Federated Learning)环境中学习局部因果结构。这一研究创新地解决了确保数据隐私的同时实现因果推断的问题,对于医学、经济等多个领域具有广泛的实际应用。 研究背景与问题定义 因果结构学习(Causal Structure Learning, CSL)通过观测数据推断变量之间的因果关系,通常...

面向少样本的混合类型对话生成的研究

混合类型对话生成领域的新突破:基于少样本学习的研究 人工智能(Artificial Intelligence, AI)的一个重要目标是构建能够进行多种自然语言对话的人工智能代理。目前,行业和学术界长期以来一直期待设计出能够同时处理开放域对话(Open-Domain Dialogue)和任务导向对话(Task-Oriented Dialogue)的对话模型,这种多技能、多类型对话的融合形式被称为混合类型对话(Mixed-Type Dialogue)。然而,尽管已有不少研究尝试解决这一问题,但大多数研究依赖于构建大规模人工标注数据集,标注成本高昂,同时严重限制了实际应用场景中的可行性。为解决这一难题,Zeming Liu(刘泽明)等人发表了一项重要研究,他们首次提出了少样本混合类型对话生成(Fe...

Asyco: 一种用于部分标注学习的非对称双任务共训练模型

Asyco: 一种用于部分标注学习的非对称双任务共训练模型

深度学习中非对称双任务协同模型改进部分标签学习的研究 研究背景 在深度学习领域,监督学习已成为众多人工智能任务的核心方法。然而,训练深度神经网络需要大量准确标注的数据,而这类数据的构建往往成本高昂且耗时。弱监督学习(Weakly Supervised Learning)作为一种有效的替代方法近年来引起了广泛关注,其中部分标签学习(Partial Label Learning, PLL)是弱监督学习的一种典型问题。它假定每个训练实例被一个候选标签集(Candidate Label Set)标注,该标签集中包含真实标签和若干错误标签。由于候选标签中存在标签歧义问题,部分标签学习成为一个充满挑战的领域。 在部分标签学习的研究中,一个关键目标是消解这种标签歧义,正确识别每个样本的真实标签。以往的方法...

基于多光谱光声断层成像和水平集分割的亚洲人皮肤黑色素型基底细胞癌精准测绘的概念验证研究

基于多光谱光声断层成像和水平集分割的亚洲人皮肤黑色素型基底细胞癌精准测绘的概念验证研究

研究助力皮肤癌诊断的新方法:基于光声成像与水平集分割算法的研究 近年来,随着全球人口老龄化和环境变化,皮肤癌的发病率逐年攀升。皮肤癌已成为重要的公共卫生问题,其中主要的非黑色素瘤类型包括鳞状细胞癌(Squamous Cell Carcinoma, SCC)和基底细胞癌(Basal Cell Carcinoma, BCC)。其中,基底细胞癌是最常见的一种。据统计,美国每年约有430万例新的基底细胞癌病例。尽管这种癌症死亡率较低,但对患者的生活质量和医疗资源造成了巨大挑战。 基底细胞癌的临床诊断和治疗仍存在诸多问题。传统的肿瘤边界评估方法主要依赖组织病理学(histopathology),这种方法虽然精准,但需通过活检等侵入性手术获取样本,并且需要耗费大量时间。此外,诸如光学相干断层成像(Opt...

机器视觉方向的光学相干断层扫描与机器人技术结合的最新进展及未来展望

光学相干断层扫描与机器人学相结合:当前研究与未来展望 学术背景 光学相干断层扫描(Optical Coherence Tomography,OCT)是一种非侵入性、高分辨率的光学成像技术,自其诞生以来就广泛应用于生物医学成像领域。它在微米级别对组织的结构进行可视化,尤其在眼科领域取得了巨大成功,例如用于角膜、视网膜等组织的成像和疾病诊断。然而,传统的OCT设备通常用于静态环境中的成像,受到体积、视场(Field of View, FOV)和操作灵活性的限制。当应用于动态、复杂的医疗场景或外科手术中时,传统OCT设备的局限性变得更加明显,例如无法适应手术目标物的移动,或难以提供实时的高分辨率成像以指导手术操作。 与此同时,医学机器人的快速发展为OCT的进一步集成提供了可能性。医学机器人以其高精...