High Sound Pressure Piezoelectric Micromachined Ultrasonic Transducers Using Sputtered Potassium Sodium Niobate

Advances in High Sound Pressure Piezoelectric Micromachined Ultrasonic Transducers Academic Background Ultrasonic transducers are widely used in object detection, non-destructive testing (NDT), biomedical imaging, and therapeutic treatments. Compared to traditional bulk ultrasonic transducers, piezoelectric micromachined ultrasonic transducers (PMU...

Dynamic 3D Metasurface Holography via Cascaded Polymer Dispersed Liquid Crystal

Dynamic 3D Metasurface Holography via Cascaded Polymer Dispersed Liquid Crystal Academic Background Metasurfaces, as two-dimensional subwavelength structures, enable local modulation of the phase and amplitude of light fields, offering novel solutions for the design of miniaturized optical devices. However, most existing metasurface holographic dis...

Root-Inspired, Template-Confined Additive Printing for Fabricating High-Robust Conformal Electronics

Root-Inspired, Template-Constrained Additive Printing for Fabricating Highly Robust Conformal Electronics Academic Background With the rapid development of emerging application scenarios such as smart robotics, smart skins, and integrated sensing systems, the application of conformal electronic devices on freeform surfaces has become crucial. Howev...

Study on the Piezoresistivity of Cr-Doped V2O3 Thin Film for MEMS Sensor Applications

Study on the Piezoresistivity of Cr-Doped V₂O₃ Thin Film for MEMS Sensor Applications Academic Background Piezoresistive microelectromechanical systems (MEMS) sensors are devices that utilize the piezoresistive effect of a material to convert stress changes, induced by the physical property being observed, into resistance changes. These sensors, su...

Precision Autofocus in Optical Microscopy with Liquid Lenses Controlled by Deep Reinforcement Learning

Precision Autofocus in Optical Microscopy with Liquid Lenses Controlled by Deep Reinforcement Learning Academic Background Microscopic imaging plays a crucial role in scientific research, biomedical studies, and engineering applications. However, traditional microscopes and autofocus techniques face hardware limitations and slow software speeds in ...

A 14 μHz/√Hz Resolution and 32 μHz Bias Instability MEMS Quartz Resonant Accelerometer with a Low-Noise Oscillating Readout Circuit

A Study on High-Resolution MEMS Quartz Resonant Accelerometer with a Low-Noise Oscillating Readout Circuit Academic Background Microelectromechanical system (MEMS) accelerometers have a wide range of applications in fields such as inertial navigation, seismic detection, wearable devices, and intelligent robots. Particularly in applications like sat...

A Microgripper Based on Electrothermal Al–SiO2 Bimorphs

Research on Electrothermally Driven Al-SiO₂ Bimorph Microgripper Academic Background Microgrippers play a crucial role in assembly and manipulation at the micro and nano scales, with wide applications in microelectronics, MEMS (Micro-Electro-Mechanical Systems), and biomedical engineering. To ensure the safe handling of delicate materials and micro...

Rapid 3D Imaging at Cellular Resolution for Digital Cytopathology with a Multi-Camera Array Scanner (MCAS)

Rapid 3D Imaging at Cellular Resolution for Digital Cytopathology with a Multi-Camera Array Scanner (MCAS)

Rapid 3D Imaging at Cellular Resolution for Digital Cytopathology with a Multi-Camera Array Scanner (MCAS) Academic Background Optical microscopy has long been the standard method for diagnosis in cytopathology. However, traditional whole-slide scanners, while capable of automatically imaging and digitizing large sample areas, are slow and expensiv...

Scalable Production of Ultraflat and Ultraflexible Diamond Membrane

Scalable Production of Ultraflat and Ultraflexible Diamond Membranes Academic Background Diamond, as a material with exceptional physical properties, holds significant potential in various fields such as electronics, photonics, mechanics, thermotics, and acoustics. However, despite substantial progress in diamond research over the past decades, the...

Growth-Based Monolithic 3D Integration of Single-Crystal 2D Semiconductors

Research on Growth-Based Monolithic 3D Integration of Single-Crystal 2D Semiconductors Academic Background With the rapid development of the modern electronics industry, three-dimensional (3D) integration technology has gradually become an important means to enhance the performance of electronic devices. Traditional two-dimensional (2D) integrated ...