MRIO: The Magnetic Resonance Imaging Acquisition and Analysis Ontology

MRIO: The Magnetic Resonance Imaging Acquisition and Analysis Ontology

MRIO: A Magnetic Resonance Imaging Acquisition and Analysis Ontology Magnetic Resonance Imaging (MRI) is a biomedical imaging technology used to non-invasively visualize internal structures of tissues in three-dimensional space. MRI is widely used in studying the structure and function of the human brain and is a powerful tool for diagnosing neurol...

Hands-On Neuroinformatics Education at the Crossroads of Online and In-Person: Lessons Learned from Neurohackademy

Neurohackademy: Combining Online and Offline Neurological Informatics Education Background Introduction In recent years, human neuroscience has entered an era of big data. Due to initiatives like the Human Connectome Project and the Adolescent Brain Cognitive Development (ABCD) study, scientists have acquired datasets of previously unimaginable sca...

Pound–Drever–Hall Feedforward: Laser Phase Noise Suppression Beyond Feedback

Special Report: Pound–Drever–Hall Feedforward Technique: Laser Phase Noise Suppression Beyond Feedback Authors: Yu-Xin Chao, Zhen-Xing Hua, Xin-Hui Liang, Zong-Pei Yue, Li You, Meng Khoon Tey Institution: State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China Journal: Optica Publication D...

Ultra-Narrow-Linewidth Hybrid-Integrated Self-Injection Locked Laser at 780 nm

Research Report on Hybrid Integrated Ultra-Narrow Linewidth Self-Injection Locking 780nm Laser Background In modern technology, narrow linewidth lasers play an essential role in various applications, including classical and quantum sensing, ion trap systems, positioning/navigation/timing systems, optical clocks, and microwave frequency synthesizers...

Low Loss Fiber-Coupled Volumetric Interconnects Fabricated via Direct Laser Writing

Background Introduction Photon integrated circuits (PICs) are significant for achieving high-speed data transmission. However, traditional photon integrated circuits, which only use a single plane or a limited number of stacked planes, are restricted in optical signal routing. Additionally, coupling losses need to be as low as possible for practica...

High-speed High-power Free-space Optical Communication via Directly Modulated Watt-class Photonic-crystal Surface-emitting Lasers

High-speed High-power Free-space Optical Communication via Directly Modulated Watt-class Photonic-crystal Surface-emitting Lasers

High-Speed High-Power Free-Space Optical Communication: Direct Modulation of Watt-Level Photonic Crystal Surface-Emitting Lasers Background Introduction As a vital light source for optical communication, semiconductor lasers are widely used due to their small size, low cost, long lifespan, and high efficiency. For example, vertical-cavity surface-e...

Hyperspectral In-Memory Computing with Optical Frequency Combs and Programmable Optical Memories

Hyperspectral In-Memory Computing and Applications of Optical Frequency Comb and Programmable Optical Memory Introduction In recent years, breakthroughs in machine learning have driven revolutionary developments in various industries, including healthcare, finance, retail, automotive, and manufacturing. These transformations have led to a surge in ...

Mode-locked Waveguide Polariton Laser

Research Report on the Realization of Blue-Ultraviolet Light Mode-Locking by Polariton Waveguides In the field of modern optoelectronics, continuous advancements in laser technology have greatly propelled the development of information technology, biomedicine, and industrial processing, among other sectors. Mode-locked laser technology, in particul...

Tumor Size Is Not Everything: Advancing Radiomics as a Precision Medicine Biomarker in Oncology Drug Development and Clinical Care

In contemporary clinical oncology practice and drug development, the methods for evaluating tumor response are on the cusp of a revolution. Since the World Health Organization (WHO) proposed tumor response classification criteria for assessing the effectiveness of anti-cancer drugs in 1981, this field has undergone several improvements. Notably, th...

Clinical Validation of AI-Powered PD-L1 Tumor Proportion Score Interpretation for Predicting Immune Checkpoint Inhibitor Response in NSCLC

Clinical Validation of AI-based Interpretation of PD-L1 Tumor Proportion Score in Predicting Response to Immune Checkpoint Inhibitors in Non-small Cell Lung Cancer In the field of tumor treatment and diagnosis, the assessment of PD-L1 (Programmed Death-Ligand 1) Tumor Proportion Score (TPS) is a critical task, especially in predicting the response ...