Speech-Induced Suppression During Natural Dialogues

During human communication, the brain processes self-generated speech and others’ speech differently, a phenomenon known as the Speech-Induced Suppression (SIS) mechanism. This mechanism involves the motor efference copy in the perception pathway, functioning similar to an “echo” that helps filter internally generated signals to avoid confusing the...

Identifying Oscillatory Brain Networks with Hidden Gaussian Graphical Spectral Models of MEEG

Identifying Oscillatory Brain Networks with Hidden Gaussian Graphical Spectral Models of MEEG

Research Background and Objectives With the continuous development of neuroscience, identifying indirectly observed processes related to functional networks has become an important research direction. Researchers attempt to estimate the activity of these functional networks through electrophysiological signals such as EEG and MEG. However, this pro...

An EEG Study on Artistic and Engineering Mindsets in Students in Creative Processes

A Study on EEG Activities in Artistic and Engineering Thinking during the Creative Process Background and Research Motivation Creativity is universally regarded as the ability to imagine new and valuable things. Researchers have identified two types of creative thinking: growth mindset and fixed mindset. Growth mindset creativity can improve skills...

Development of Complemented Comprehensive Networks for Rapid Screening of Repurposable Drugs Applicable to New Emerging Disease Outbreaks

Research on Network Construction and Application of Novel Drug Repositioning Strategies Background During the COVID-19 pandemic, researchers and pharmaceutical companies have been dedicated to developing treatments and vaccines. Drug repositioning, due to its shortcut, is considered a rapid and effective response strategy. Drug repositioning attemp...

Potential Biomarker for Early Detection of ADHD Using Phase-Based Brain Connectivity and Graph Theory

Research Report on Potential Biomarkers for Early Detection of ADHD: Phase-Based Functional Brain Connectivity and Graph Theory Analysis This is a research report titled “Potential Biomarkers for Early Detection of ADHD: Using Phase-Based Functional Brain Connectivity and Graph Theory Analysis”. This study was conducted by Farhad Abedinzadeh Torgha...

The Neural Mechanism of Knowledge Assembly in the Human Brain Inspires Artificial Intelligence Algorithm

The Neural Mechanism of Knowledge Assembly in the Human Brain Inspires Artificial Intelligence Algorithm

Brain Science Research Inspires AI Algorithms: Neural Mechanisms of Knowledge Assembly Background Introduction When new information enters the brain, human pre-existing knowledge of the world can quickly change through a process called “knowledge assembly.” Recently, in a study conducted by Nelli et al., the neural correlates of knowledge assembly ...

Asthma Prediction via Affinity Graph Enhanced Classifier: A Machine Learning Approach Based on Routine Blood Biomarkers

Asthma Prediction Enhanced by Affinity Graph-Based Classifier: A Machine Learning Approach Using Routine Blood Biomarkers Background Asthma is a chronic respiratory disease that affects approximately 235 million people worldwide. According to the World Health Organization (WHO), the main characteristic of asthma is airway inflammation, leading to s...

Identification of Autism Spectrum Disorder Using Multiple Functional Connectivity-Based Graph Convolutional Network

The title of this paper is “Identification of Autism Spectrum Disorder Using Multiple Functional Connectivity-based Graph Convolutional Network,” published in the journal “Medical & Biological Engineering & Computing,” volume 62, pages 2133-2144, in 2024. This paper proposes a multiple functional connectivity-based graph convolutional network (mfc-...

Graph Neural Network for Representation Learning of Lung Cancer

Graph Neural Network for Representation Learning of Lung Cancer

Representation Learning of Lung Cancer Based on Graph Neural Networks Background Introduction With the rapid development of digital pathology, image-based diagnostic systems are becoming increasingly important in precise pathological diagnosis. These systems rely on Multiple Instance Learning (MIL) technology for Whole Slide Images (WSIs). However,...

Functional Connectivity Alterations in Patients with Post-Stroke Epilepsy Based on Source-Level EEG and Graph Theory

Research Report on Changes in Functional Connectivity in Post-Stroke Epilepsy (PSE) Patients Based on Source-Level EEG and Graph Theory Research Background Epilepsy has various etiologies, including idiopathic, congenital, head trauma, central nervous system infections, brain tumors, neurodegenerative diseases, and cerebrovascular diseases. Among t...