Preparatory Movement State Enhances Premovement EEG Representations for Brain-Computer Interfaces

EEG of Pre-movement Phase Aids Brain-Computer Interface (BCI) in Recognizing Movement Intentions Background and Research Objectives Brain-Computer Interface (BCI) is a technology that translates human intentions directly through neural signals to control devices, holding extensive application prospects [1]. BCI has the potential to revolutionize va...

A User-Friendly Visual Brain-Computer Interface Based on High-Frequency Steady-State Visual Evoked Fields Recorded by OPM-MEG

A User-Friendly Visual Brain-Computer Interface Based on High-Frequency Steady-State Visual Evoked Fields Recorded by OPM-MEG

Visual Brain-Computer Interface Based on High-Frequency Steady-State Visual Evoked Fields Background Brain-Computer Interface (BCI) technology allows users to control machines by decoding specific brain activity signals. While invasive BCIs excel in capturing high-quality brain signals, their application is mainly limited to clinical settings. Non-...

Auditory Cues Modulate the Short Timescale Dynamics of STN Activity During Stepping in Parkinson’s Disease

Patients with Parkinson’s Disease (PD) often experience gait impairments, which severely affect their quality of life. Previous studies have suggested that β-frequency (15-30 Hz) oscillatory activity in the basal ganglia may be associated with gait impairments, but the exact dynamics of these oscillations during the gait process remain unclear. Add...

Learning Inverse Kinematics Using Neural Computational Primitives on Neuromorphic Hardware

Learning Inverse Dynamics Using Brain-Inspired Computational Principles on Neuromorphic Hardware Background and Research Motivation In the modern field of robotics, there is great potential for low-latency neuromorphic processing systems enabling autonomous artificial agents. However, the variability and low precision of current hardware foundation...

Magneto-Oscillatory Localization for Small-Scale Robots

Detailed Explanation of a New Small-scale Magneto-oscillatory Localization Method and Its Application in Robotics Research Background and Motivation Micro-robots have demonstrated immense potential in the medical field, especially in minimally invasive surgeries, targeted drug delivery, and in vivo sensing. Recently, significant progress has been m...

Giant Electron-Mediated Phononic Nonlinearity in Semiconductor–Piezoelectric Heterostructures

Giant Electron-Mediated Phononic Nonlinearity in Semiconductor–Piezoelectric Heterostructures

Large Electron-Mediated Phonon Nonlinearity in Semiconductor-Piezoelectric Heterostructures In modern science and technology, the efficiency and determinacy of information processing are crucial determinants of its application potential. Nonlinear photonic interactions at optical frequencies have already demonstrated significant breakthroughs in bo...

An Electroencephalogram Microdisplay to Visualize Neuronal Activity on the Brain Surface

An Electroencephalogram Microdisplay to Visualize Neuronal Activity on the Brain Surface

A Visualization Microdisplay for Neuronal Activity on the Brain Surface Using Electroencephalography Background Introduction Current functional mapping in neurosurgery primarily relies on verbal communication between neurosurgeons and electrophysiologists. These processes are time-consuming and have limited resolution. Additionally, the electrode g...