基于受限玻尔兹曼机的无数据集权重初始化方法

基于统计力学分析的受限玻尔兹曼机权重初始化方法研究 学术背景 在深度学习中,神经网络的权重初始化对模型的训练效果有着重要影响。特别是在前馈神经网络(feed-forward neural networks)中,已有多种数据集无关的权重初始化方法被提出,例如LeCun、Xavier(或Glorot)和He初始化。这些方法通过特定的分布(如高斯分布或均匀分布)随机确定权重参数的初始值,而无需使用训练数据集。然而,在受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)中,类似的权重初始化方法尚未被开发。RBM是一种由两层组成的概率神经网络,广泛应用于协同过滤、降维、分类、异常检测和深度学习等领域。由于RBM的权重初始化对学习效率有显著影响,因此开发一种适用于RBM的...

基于视觉语言整合的零样本人-物交互检测研究

基于视觉语言整合的零样本人-物交互检测研究

基于视觉-语言整合的零样本人-物交互检测研究 学术背景 人-物交互(Human-Object Interaction, HOI)检测是计算机视觉领域的一个重要研究方向,旨在识别图像中人与物体之间的交互行为。传统的HOI检测方法主要依赖于监督学习,即需要大量的人工标注数据来训练模型。然而,这种方法在面对未见过的物体类别时,泛化能力有限。此外,现实世界中的人-物交互种类繁多且复杂,手动标注所有可能的交互类别既耗时又费力。 近年来,随着视觉-语言模型(Vision-Language Models, VLM)的快速发展,零样本学习(Zero-Shot Learning)成为了一个热门研究方向。零样本学习的目标是让模型能够识别在训练过程中从未见过的类别。基于这一背景,作者提出了一种名为“知识整合到HO...

PrivCore:用于高效私有推理的乘法-激活协同优化

深度神经网络中的高效隐私推理:PrivCore框架的突破性研究 背景介绍 随着深度学习技术的快速发展,深度神经网络(Deep Neural Networks, DNNs)在图像识别、自然语言处理、医疗诊断等领域的应用日益广泛。然而,随着数据隐私和模型保护的需求日益增长,如何在保护用户隐私的同时进行高效的模型推理成为了一个重要的研究课题。传统的隐私保护推理方法,如基于安全多方计算(Secure Multi-Party Computation, MPC)的隐私推理(Private Inference, PI),虽然在隐私保护方面表现优异,但其计算和通信开销巨大,难以在实际应用中广泛推广。 近年来,研究人员尝试通过优化网络架构来减少隐私推理中的计算和通信开销。然而,现有研究大多集中在减少非线性操作...

FedGPT:低秩张量空间中学习全局提示用于异构联邦学习

学术背景 随着人工智能(AI)模型的日益复杂和数据隐私保护的需求增加,联邦学习(Federated Learning, FL)作为一种分布式机器学习范式,逐渐成为研究热点。联邦学习允许多个客户端在不共享本地数据的情况下协同训练一个全局模型,从而在保护数据隐私的同时提升模型的泛化能力。然而,联邦学习在实际应用中面临三大挑战:1)模型参数过多导致通信负担过重;2)非独立同分布(Non-IID)数据导致全局模型性能下降;3)模型异构性使得传统的联邦聚合方法失效。 为了解决这些问题,本文提出了一种名为FedGPT的创新方法,通过在低秩张量空间中学习全局提示(Global Prompt),有效应对上述挑战。具体来说,FedGPT使用提示(Prompt)而非模型参数作为本地知识的载体,从而大幅减少通信量...

基于双视图图表示学习的图级异常检测方法

基于双视图图-图表示学习的图级异常检测研究 学术背景 在当今数据驱动的世界中,图(Graph)作为一种强大的数据结构,被广泛应用于社交网络分析、金融欺诈检测和生物信息学等领域。图能够有效地表示复杂的关系数据,例如社交网络中的用户关系、金融交易中的资金流动以及化学分子中的原子和化学键关系。然而,随着图数据的广泛应用,如何从大量图数据中检测出异常的图样本(Graph-Level Anomaly Detection, GLAD)成为了一个重要的研究问题。 现有的GLAD方法通常依赖于图神经网络(Graph Neural Networks, GNNs)来提取图级表示,并基于这些表示进行异常检测。然而,GNNs的局限性在于其感受野(receptive field)有限,可能无法捕捉到图中潜在的异常信息...

MFcKT:基于三阶段记忆流控制的知识追踪

学术背景 随着人工智能(AI)技术的快速发展,智能教育系统(Intelligent Tutoring Systems, ITS)如Khan Academy和Coursera在个性化学习方面取得了显著进展。知识追踪(Knowledge Tracing, KT)作为ITS中的关键技术,旨在通过分析学生的学习数据来推断其知识掌握情况,并预测其未来的学习表现。尽管近年来KT领域取得了诸多进展,但现有模型在模拟记忆结构方面存在不足,导致学生显性学习与隐性记忆转换之间的不一致性。为了解决这一问题,华中师范大学等机构的研究团队提出了一种基于记忆流控制的三阶段知识追踪模型(Memory Flow-controlled Knowledge Tracing with Three Stages, MFcKT),旨...

通过高阶运动流进行共轭视觉表征的持续学习

基于高阶运动流的共轭视觉表征持续学习:CMOSFET模型的研究 学术背景 在人工智能和计算机视觉领域,如何从连续的视觉数据流中进行持续学习(Continual Learning)是一个长期存在的挑战。传统的机器学习方法通常依赖于独立同分布(i.i.d.)的假设,即所有训练数据在训练时是静态且可用的。然而,现实世界中的视觉数据往往是连续的、非独立同分布的,这给模型的训练带来了巨大的困难。此外,现有的无监督学习方法大多依赖于大规模的离线训练数据集,这与人类和动物通过连续体验环境进行学习的方式截然不同。 为了解决这些问题,Simone Marullo、Matteo Tiezzi、Marco Gori和Stefano Melacci等研究人员提出了一种新的无监督持续学习模型,名为CMOSFET(Co...

基于互锚对比学习的少样本关系抽取研究

利用实例-标签动态的互锚对比学习进行少样本关系抽取 学术背景 在自然语言处理(Natural Language Processing, NLP)领域,关系抽取(Relation Extraction, RE)是一项基础任务,旨在从文本中识别并提取实体之间的关系。然而,传统的监督学习方法依赖于大量标注数据,而在实际应用中,标注数据的稀缺性严重制约了模型的性能。为了应对这一挑战,少样本关系抽取(Few-Shot Relation Extraction, FSRE)应运而生,旨在通过少量标注数据训练模型,使其能够在有限的样本下准确识别实体关系。 近年来,预训练语言模型(Pre-trained Language Models, PLMs)在FSRE任务中取得了显著进展,尤其是结合对比学习(Contr...

基于旋转不变神经点场的精细编辑方法

基于旋转不变神经点场的精细编辑方法

基于旋转不变神经点场的高效细粒度3D场景编辑研究 学术背景 在计算机视觉和图形学领域,从多视角图像中建模和渲染真实场景的新视角是一个核心问题。神经辐射场(Neural Radiance Fields, NeRF)近年来在生成高质量新视角合成结果方面展现出巨大潜力,并被认为有望取代传统的显式3D表示方法,如网格或体素。然而,尽管NeRF在渲染质量上表现出色,其在场景编辑方面的能力仍然有限。现有的可编辑NeRF方法在效率和细粒度编辑能力上存在明显不足,这限制了NeRF在创造性编辑和实际应用中的潜力。 为了解决这一问题,研究人员提出了一种基于旋转不变神经点场(Rotation-Invariant Neural Point Fields)的编辑框架,旨在通过结合隐式NeRF表示和显式点表示的互补优势...

基于子空间增强超图神经网络的焦虑障碍识别与生物标志物检测

基于子空间增强超图神经网络的焦虑障碍识别与生物标志物检测

基于子空间增强超图神经网络的焦虑障碍识别与生物标志物检测研究 学术背景 焦虑障碍(Anxiety Disorders, ADs)是全球范围内常见的心理健康问题,影响约7.3%的人口。焦虑障碍患者通常表现出过度的恐惧、担忧以及相关的行为异常,这些症状严重影响了患者的社交功能和生活质量,同时也给家庭和社会带来了巨大的负担。焦虑障碍可以分为多种亚型,如广泛性焦虑障碍(Generalized Anxiety Disorder, GAD)、社交焦虑障碍(Social Anxiety Disorder, SAD)、恐慌症(Panic Disorder, PD)和特定恐惧症(Specific Phobia, SP)。尽管这些亚型在临床实践中通常通过观察进行诊断,但仍需通过生物标志物来区分患者与健康个体,以...