GCLink:一种用于基因调控网络推断的图对比链接预测框架

研究背景 基因调控网络(Gene Regulatory Networks, GRNs)是理解细胞内复杂生物过程的关键工具。它揭示了转录因子(Transcription Factors, TFs)与靶基因之间的相互作用,从而控制基因的转录过程,进而调控细胞行为。随着单细胞RNA测序(single-cell RNA-sequencing, scRNA-seq)技术的发展,研究者能够在单细胞分辨率下获取基因表达数据,这为GRNs的推断提供了前所未有的机会。然而,scRNA-seq数据的稀疏性和高变异性为GRNs的推断带来了巨大挑战。 现有的GRN推断方法主要分为两类:基于相关性或互信息的无监督学习方法,以及基于机器学习的监督学习方法。尽管这些方法在某些情况下表现出色,但它们往往依赖于成对基因的相关...

ImmunoTAR:整合性优先排序癌症免疫治疗的细胞表面靶点

癌症是全球范围内导致死亡的主要原因之一。尽管近年来免疫治疗取得了显著进展,如嵌合抗原受体T细胞(CAR-T)疗法和抗体药物偶联物(ADCs)的成功应用,但如何有效识别癌症特异性表面蛋白靶点仍然是当前研究的重大挑战。表面蛋白靶点的识别对于开发精准且低毒的免疫疗法至关重要。现有的技术,如RNA测序和蛋白质组学,虽然能够帮助研究人员分析这些靶点,但仍然缺乏系统化的方法来优先选择最合适的免疫治疗靶点。 为此,来自Children’s Hospital of Philadelphia、Drexel University、BC Cancer Research Institute等机构的科研团队开发了一种名为ImmunoTAR的计算工具,旨在通过整合多种公共数据库的数据,系统化地优先选择免疫治疗靶点。该工...

基于信息熵增强BERT和多向GRU的S-硫化位点预测方法

背景介绍 蛋白质翻译后修饰(Post-Translational Modifications, PTMs)是调节细胞活动的关键机制,包括基因转录、DNA修复和蛋白质相互作用等。其中,半胱氨酸(Cysteine)作为稀有氨基酸,通过其硫醇基团(Thiol Group)参与多种PTMs,尤其是在氧化还原平衡和信号传递过程中发挥着重要作用。S-硫酰化(S-Sulfhydration)是一种重要的PTM,与心血管疾病和神经系统疾病的发生和发展密切相关。然而,S-硫酰化的具体机制仍不明确,尤其是在位点识别方面存在较大的挑战。 传统的S-硫酰化位点识别方法,如生物素转换法(Biotin Conversion Method)和马来酰亚胺荧光法(Maleimide Fluorescence Method),...

基于单细胞统一极化评估的免疫细胞极化分析方法

免疫细胞在应对多种刺激时会经历细胞因子驱动的极化过程,这一过程会改变其转录谱和功能状态。这种动态变化在健康和疾病中的免疫反应中起着核心作用。然而,目前尚缺乏一种系统的方法来评估单细胞RNA测序(scRNA-seq)数据中的细胞因子驱动极化现象。为了解决这一问题,研究人员开发了单细胞统一极化评估(SCUPA)方法,这是首个用于全面评估免疫细胞极化的计算方法。 论文来源 该论文由Wendao Liu和Zhongming Zhao共同撰写,他们分别来自The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences和Center for Precisio...

COME:基于对比映射学习的单细胞RNA测序数据空间重建方法

单细胞RNA测序(scRNA-seq)技术能够以单细胞分辨率进行高通量转录组分析,极大地推动了细胞生物学的研究。然而,scRNA-seq技术的一个显著局限性是,它需要将组织解离,导致细胞在组织中的原始空间位置信息丢失。空间转录组学(Spatial Transcriptomics, ST)技术能够提供精确的空间基因表达图谱,但其在基因检测数量、成本以及细胞类型注释的精细度方面存在限制。因此,如何在scRNA-seq数据中恢复空间信息,成为了当前研究的一个重要挑战。 为了解决这一问题,研究人员提出了通过细胞对应学习(cell correspondence learning)在scRNA-seq和ST数据之间传递知识的方法,从而恢复scRNA-seq数据中的空间信息。然而,现有的方法在建模局部和全...

大规模基因组测序研究中的高效存储与回归计算

随着大规模人口生物样本库的日益普及,全基因组测序(Whole Genome Sequencing, WGS)数据在人类健康和疾病研究中的潜力得到了显著提升。然而,WGS数据的庞大计算和存储需求给研究机构,尤其是资金不足的机构或发展中国家的研究人员带来了巨大挑战。这种资源分配的不平等限制了前沿遗传学研究的公平性。为了解决这一问题,Manuel A. Rivas和Christopher Chang等人开发了新的算法和回归方法,显著减少了WGS研究的计算时间和存储需求,特别是针对罕见变异的处理。 论文来源 这篇论文由Manuel A. Rivas和Christopher Chang共同撰写。Rivas来自斯坦福大学生物医学数据科学系,Chang则供职于Grail Inc.。该论文于2025年2月1...

基于共享单元和多通道注意力机制的circRNA与疾病关联预测

背景介绍 近年来,环状RNA(circRNA)作为一种新型的非编码RNA分子,在疾病的发生、发展和治疗中扮演着重要角色。circRNA具有独特的环状结构,不易被核酸酶降解,因此被认为是潜在的生物标志物和治疗靶点。然而,通过实验方法研究circRNA与疾病的关联不仅耗时且成本高昂,这限制了相关研究的进展。为了解决这一问题,研究人员开始开发计算模型,通过生物信息学方法预测circRNA与疾病的关联,从而为实验研究提供指导。 尽管多视图学习方法在预测circRNA与疾病关联方面得到了广泛应用,但现有方法往往未能充分利用不同视图之间的潜在信息,且忽略了不同视图对预测结果的重要性差异。因此,哈尔滨工业大学和电子科技大学的团队提出了一种结合共享单元和多通道注意力机制的新方法,名为MSMCDA(Multi...

ACImpute:基于约束增强平滑方法的单细胞RNA测序数据插补

单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)技术近年来在生物学和医学研究中得到了广泛应用,它能够揭示单个细胞的转录组信息,从而帮助科学家更好地理解细胞的异质性和复杂性。然而,scRNA-seq数据中存在一个普遍的问题,即“dropout事件”(dropout events)。这些事件导致许多基因在单个细胞中的表达值被记录为零,而这些零值可能分为两类:一类是“生物零”(biological zeros),表示基因在该细胞中确实没有表达;另一类是“技术零”(technical zeros),由于测序技术的限制导致基因表达未被检测到。这种数据稀疏性严重影响了后续分析的准确性和有效性,例如细胞聚类和轨迹推断。 为了解决这一问题,研究人员开发了多种插补...

基于APNet的稀疏深度学习模型在COVID-19严重程度驱动因素发现中的应用

学术背景 COVID-19大流行对全球公共卫生系统造成了巨大冲击,尽管目前疫情已有所缓解,但其复杂的免疫病理机制、长期后遗症(如“长新冠”)以及未来可能出现的类似威胁,仍然推动着相关研究的深入。特别是重症COVID-19患者,常伴随“细胞因子风暴”、急性呼吸窘迫综合征(ARDS)、多器官衰竭等严重症状,亟需更精准的预测模型和生物标志物来指导临床决策。 传统的机器学习(ML)和深度学习(DL)模型在高通量组学数据分析中表现出色,但往往缺乏生物可解释性,难以揭示非线性蛋白质动态(如翻译后修饰)和复杂的信号通路调控机制。为了解决这一问题,作者开发了APNet(Activity PASNet),一种结合了差异活性分析和生物信息驱动的稀疏深度学习模型,旨在通过可解释的预测发现COVID-19重症的驱动...

SP-DTI:基于亚口袋信息的Transformer模型用于药物-靶点相互作用预测

学术背景 药物-靶点相互作用(Drug-Target Interaction, DTI)预测是药物发现中的关键环节,能够显著降低实验筛选的成本和时间。然而,尽管深度学习技术已经提升了DTI预测的准确性,现有方法仍面临两大挑战:泛化能力不足和亚口袋级相互作用的忽视。首先,现有模型在未见过的蛋白质和跨域设置下性能显著下降;其次,当前的分子关系学习往往忽略了亚口袋级别的相互作用,而这些相互作用对于理解结合位点的细节至关重要。为了解决这些问题,研究人员提出了一种名为SP-DTI的新型模型,通过引入亚口袋分析和预训练语言模型,提升了DTI预测的准确性和泛化能力。 论文来源 这篇论文由Sizhe Liu、Yuchen Liu、Haofeng Xu、Jun Xia和Stan Z. Li共同撰写。他们分别来...