臨床放射特性を用いた深層学習放射線学モデルによる膵管腺癌患者の潜在性腹膜転移の特定と検証

タイトルページ: 深層学習放射線組織学モデルと臨床放射線学的特徴を併せた膵管腺癌患者の潜在的腹膜転移の予測モデルの開発と検証 背景 膵管腺癌(Pancreatic Ductal Adenocarcinoma, PDAC)は極めて致死率の高い悪性腫瘍で、5年生存率は約11%です。予後不良の一部の理由は、80-85%の患者が症状が現れた時点で、すでに進行期の病気、切除不能、または転移(潜在的腹膜転移(Occult Peritoneal Metastases, OPM)を含む)が発生していることにあります。腹膜はPDACの第2の一般的な転移経路であり、約10-20%の患者が初診時に腹膜転移を示します。この部分の患者については、早期に腹膜転移を特定することは、不必要な手術を避けるための治療選択に大き...

超音波およびマンモグラフィー画像を組み合わせた深層学習によるBF-RADS US 4a病変の悪性度予測:診断研究

深層学習を用いた乳房X線写真と超音波画像を組み合わせたBI-RADS US 4Aレジオンの悪性度予測に関する診断研究 背景紹介 乳がんは女性で最も一般的な悪性腫瘍で、comparatively高い発症率と死亡率を示しています。以前の研究では、乳腺の密度が高い女性ほど乳がんになりやすいことが示されています。アジア人女性の乳腺密度は一般に、アフリカ系アメリカ人や白人女性よりも高いため、乳腺密度の高いアジア人女性を対象とした研究が特に重要です。 乳房X線撮影(マンモグラフィー)は、乳がんのスクリーニングに重要な手段と考えられており、乳がん関連死亡率を30%減らすことができると言われています。しかし、マンモグラフィーは乳腺密度の高い女性の乳腺病変の検出能力が低く、感度は48%~85%に低下することが...

手術室を混合現実環境に変える: 脳動脈瘤クリッピングのための前向き臨床調査

手術室を混合現実環境に変える: 脳動脈瘤クリッピングのための前向き臨床調査

手術室を混合現実環境に変える:脳動脈瘤クリッピング手術のための前向き臨床研究 脳動脈瘤の外科的治療は、神経外科の中でも非常に複雑で繊細な過程である。手術成績を改善するため、研究者は新しい技術やアプローチを絶えず探求している。近年、Mixed Reality(MR)技術の進歩により、手術室(Operating Room, OR)に新たなブレークスルーがもたらされた。特に、ヘッドマウンテッドディスプレイ(Head-Mounted Display, HMD)の使用により、外科医は患者の実際の解剖構造に仮想の三次元(3D)画像を重ね合わせることができ、空間認識とハンドリングの直感性が向上する。 研究の背景と目的 本研究の目的は、脳動脈瘤クリッピング手術における新しいMR-HMDの応用可能性、特に外科...

人工知能を用いた乳腺病変の分類:多施設共同研究

人工知能に基づく乳房病変の分類に関する多施設研究 乳がん領域では、早期診断は治療効果と生存率の向上に不可欠です。乳がんは、非浸潤がん(原発性がん)と浸潤がんの2種類に大別されます。これらの2つのタイプのがんでは、治療戦略と予後が大きく異なります。非浸潤がんではリンパ節転移のリスクが低い(1-2%)ため、センチネルリンパ節生検(SLNB)は推奨されません。一方、浸潤がんの場合、SLNBまたは腋窩リンパ節郭清(ALND)が必要です。したがって、術前に良性、悪性、非浸潤がん、浸潤がんを正確に区別することが非常に重要です。 コントラスト強調乳房撮影(CEM)は、腫瘍の血管特性を描出できる新しい技術で、臨床応用が広がっています。しかし、CEMは乳がんの診断では悪性病変に対する感度は高いものの、特異度は...

术後定位放射線療法による脳転移患者の局所制御の放射線学に基づく予測

脳転移患者の術後ステレオタクティック放射線療法局所制御予測における放射線機能解析の応用 学術背景 脳転移(Brain Metastases, BMs)は最も一般的な悪性脳腫瘍で、その発症率は原発性脳腫瘍(例えば膠芽腫)を大きく上回ります。最近の医療ガイドラインは、症状が顕著または大きな脳転移患者に対して手術治療を推奨しています。局所制御率を向上させるために、一または二つの切除されたBMs患者に対して切除腔のステレオタクティック放射線療法(Stereotactic Radiotherapy, SRT)を推奨しており、この方法により術後12ヶ月内に70%から90%の局所制御率が達成できます。しかし、補助SRT後でも局所失敗(Local Failure, LF)のリスクは依然として存在し、これが高...

ラマンベースの機械学習プラットフォームがIDHmutとIDHwtのグリオーマ間のユニークな代謝差異を明らかにする

ラマン分光法と機械学習プラットフォームに基づくIDH変異型と野生型膠芽腫細胞の代謝差異研究 背景紹介 膠芽腫の診断と治療において、フォルマリン固定、パラフィン包埋(FFPE)組織切片が広く使用されています。しかし、包埋媒体の背景ノイズの影響を受け、FFPE組織はラマン分光法に基づく研究に限られた応用しかされていません。この問題を克服し、腫瘍サブタイプを識別するために、我々の研究チームは新しいラマン分光法に基づく機械学習プラットフォーム「APOLLO (悪性膠芽腫のラマン分光法病理学)」を開発しました。これはFFPE組織切片から膠芽腫のサブタイプを予測できるプラットフォームです。 論文の出典 本論文は、Adrian Lita、Joel Sjöberg、David Păcioianuらの学者によ...

拡散に基づく深層学習法による超微細構造イメージングと体積電子顕微鏡の拡張

拡散に基づく深層学習法による超微細構造イメージングと体積電子顕微鏡の拡張

拡散モデルベースの深層学習アルゴリズムを用いた超解像度イメージングと体積電子顕微鏡の強化 背景紹介 電子顕微鏡(Electron Microscopy、略してEM)は高解像度のイメージングツールとして、細胞生物学の重大な突破口を開いた。従来のEM技術は主に2次元のイメージングに使用されていたが、ナノスケールの複雑な細胞構造を明らかにしてきた一方で、3次元(3D)構造の研究には一定の限界があった。より高度な技術である体積電子顕微鏡(Volume Electron Microscopy、略してVEM)は、連続切片と断層走査技術(透過電子顕微鏡TEMやスキャニング電子顕微鏡SEMなど)を用いて、細胞や組織の3Dイメージングを実現し、細胞、組織、さらには小型のモデル生物のナノスケールの3D構造を抽出...

個別化した猫の脊髄刺激モデリングのための新しいCNNベースの画像セグメンテーションパイプライン

卷積ニューラルネットワーク(CNN)に基づく画像分割パイプラインを用いた個体化された猫の脊髄刺激モデリング 背景と研究動機 脊髓刺激(Spinal Cord Stimulation, SCS)は、慢性疼痛管理に広く使用されている治療法です。近年、SCは神経活動を調節し、失われた自律または感覚運動機能を回復させるためにも使用されています。個別化されたモデリングと治療計画は、SCを安全かつ効果的に行うための重要な側面です。しかし、必要な詳細さと精度のあるスパイン模型の生成には、人間の専門家による時間のかかる手動の画像分割が必要となります。したがって、限られたデータでも高品質の解剖学的モデルを生成できるよう、自動化された分割アルゴリズムが切実に求められています。 論文の出典 本論文は、Alessa...

EEGによる聴覚注意検出のための注意誘導型グラフ構造学習ネットワーク

EEGによる聴覚注意検出のための注意誘導型グラフ構造学習ネットワーク

注意力ガイダンスによるグラフ構造学習ネットワークをEEGベースの聴覚注意検出に応用 学術的背景 “カクテルパーティー効果”は、複数の話者がいる環境で、人間の脳が選択的に一人の話者に注意を向け、他の人を無視する能力を表しています。しかし、聴覚障害者にとってこの状況は大きな課題となります。補聴器や人工内耳などの現代の聴覚補助機器は雑音除去に効果的ですが、リスナーが注目したいシグナルを区別することはできません。聴覚注意検出(Auditory Attention Detection、AAD)タスクは、この問題を解決する潜在能力を持っており、脳から直接注意に関連する情報を抽出します。神経科学研究によると、非侵襲的な神経記録技術である脳波(Electroencephalography、EEG)には、聴覚...

EEG解読のための深層学習を用いたユークリッド整列の体系的評価

EEG解読におけるユークリッド整列と深層学習の系統的評価 背景紹介 脳波(EEG)信号は、非侵襲性、携帯性、低コストな収集などの利点から、脳コンピューターインターフェース(BCI)タスクで広く利用されています。しかし、EEG信号には低い信号対雑音比、電極位置の影響を受けやすい、空間分解能が低いなどの欠点があります。深層学習(DL)技術の進歩に伴い、この技術はBCI分野で優れた性能を示し、場合によっては従来の機械学習手法を上回っています。しかし、DLモデルには大量のデータが必要であるという主な障害があります。複数の被験者データを使った転移学習(Transfer Learning、TL)は、データ共有によってDLモデルをより効率的に訓練できます。ユークリッド整列(Euclidean Alignm...