StrokeClassifier:使用电子健康记录的集合共识模型进行缺血性脑卒中病因分类

StrokeClassifier:人工智能工具基于电子健康记录对缺血性卒中进行病因分类 项目背景及研究动机 脑卒中(尤其是急性缺血性卒中,AIS)的病因识别工作对二次预防至关重要,但诊断起来往往非常困难。在美国,每年的缺血性卒中新发病例近67.6万,其中四分之一的患者曾有过卒中史。这种病症的再发率较高,甚至可能导致死亡或进一步的残疾。缺血性卒中的病因可以多种多样,包括大动脉粥样硬化、心源栓塞、小血管病以及其他罕见病因。然而,美国大约20-30%的缺血性卒中患者在经过评估后,病因依然无法确定,被归类为隐源性卒中。这部分患者的再发卒中风险特别高。因此,能够准确识别隐源性卒中的病因,对于优化治疗方案、提高患者预后具有重要意义。然而,做出准确诊断需要整合大量的数据,包括临床史、体检结果、实验室数据、...

基于心电图的机器学习算法在全人群水平进行心血管疾病的诊断和验证

基于心电图的大规模心血管诊断机器学习算法的开发与验证 引言 心血管疾病(Cardiovascular diseases,CV)一直是全球范围内疾病负担的主要来源,早期诊断和干预对降低疾病并发症、医疗使用率和费用至关重要。传统的心电图(Electrocardiogram,ECG)作为一种低成本且便捷的诊断工具,广泛应用于心血管疾病的检测。然而,现有的ECG解释技术(包括人工和计算机算法)在识别高层次信号互动及“隐藏”的临床相关模式方面存在局限。人工智能(Artificial Intelligence,AI)尤其是深度学习(Deep Learning,DL)的出现,提供了识别ECG信号中“隐藏”模式并同时评估多种心血管疾病的复杂互动关系的全新契机。本研究正是基于这一背景展开。 论文来源与作者 本...

在基于模型诊断中的关键观测

在模型驱动的故障诊断中,能够识别出导致系统异常的关键观测数据是十分有价值的。本文介绍了一种识别关键观测数据的框架和算法。该框架通过将原始观测数据抽象为”子观测”,来确定哪些观测对诊断结果至关重要。一个”关键子观测”被定义为在最大程度上抽象化后,仍能导出与原始观测相同的最小诊断集。 该研究由澳大利亚的Cody James Christopher和法国的Alban Grastien两位作者合作完成,分别来自澳大利亚科学与工业研究组织数据61中心和法国原子能与替代能源委员会。他们的工作发表于2024年的人工智能期刊上。 研究人员首先阐述了模型驱动诊断的基本框架和概念。该框架包括系统模型、观测数据和诊断假设空间三个主要部分。系统模型描述了系统的所有可能行为;观测是对实际系统行为的感知,可能来源于传感...