集成AI工具通过盲超扫描预测孕龄的诊断准确性

基于盲超声扫描的AI工具估算妊娠年龄的诊断准确性 背景介绍 妊娠年龄(Gestational Age, GA)的准确评估是良好孕期护理的基础,但通常需要通过超声检查实现。然而,许多低资源地区缺乏足够的超声设备,这使得GA的准确评估变得十分困难。近年来,硬件和人工智能(Artificial Intelligence, AI)在医学图像分析中的进步,为广泛使用这一诊断工具提供了契机。本研究基于一个深度学习AI模型,开发了一个低成本、无需高端配置的电池供电设备,旨在评估其在非专业用户手中估算妊娠年龄的准确性。 研究来源 这篇研究由Jeffrey S. A. Stringer, MD及其团队撰写,作者来自于北卡罗来纳大学、赞比亚大学等机构。该研究于2024年8月1日在线发表于《JAMA》。 研究流程...

StrokeClassifier:使用电子健康记录的集合共识模型进行缺血性脑卒中病因分类

StrokeClassifier:人工智能工具基于电子健康记录对缺血性卒中进行病因分类 项目背景及研究动机 脑卒中(尤其是急性缺血性卒中,AIS)的病因识别工作对二次预防至关重要,但诊断起来往往非常困难。在美国,每年的缺血性卒中新发病例近67.6万,其中四分之一的患者曾有过卒中史。这种病症的再发率较高,甚至可能导致死亡或进一步的残疾。缺血性卒中的病因可以多种多样,包括大动脉粥样硬化、心源栓塞、小血管病以及其他罕见病因。然而,美国大约20-30%的缺血性卒中患者在经过评估后,病因依然无法确定,被归类为隐源性卒中。这部分患者的再发卒中风险特别高。因此,能够准确识别隐源性卒中的病因,对于优化治疗方案、提高患者预后具有重要意义。然而,做出准确诊断需要整合大量的数据,包括临床史、体检结果、实验室数据、...