Deep Learning Combining Mammography and Ultrasound Images to Predict the Malignancy of BI-RADS US 4a Lesions in Women with Dense Breasts: A Diagnostic Study

Research on Using Deep Learning to Combine Mammography and Ultrasound Images for Predicting Malignancy of BI-RADS US 4A Lesions in Women with Dense Breasts Background Breast cancer is the most common malignant tumor in women, with a relatively high incidence and mortality rate. Previous studies have found that women with dense breasts are more like...

Artificial Intelligence-Based Classification of Breast Lesion from Contrast Enhanced Mammography: A Multicenter Study

Multi-center Study on Artificial Intelligence-based Classification of Breast Lesions In the field of breast cancer, early diagnosis is crucial for improving treatment efficacy and survival rate. Breast cancer can be mainly divided into two categories: in situ carcinoma and invasive carcinoma, which have significant differences in treatment strategi...

Diffusion-based Deep Learning Method for Augmenting Ultrastructural Imaging and Volume Electron Microscopy

Diffusion-based Deep Learning Method for Augmenting Ultrastructural Imaging and Volume Electron Microscopy

Enhancing Super-Resolution Imaging and Volume Electron Microscopy with Deep Learning Algorithms Based on Diffusion Models Background Introduction Electron Microscopy (EM) as a high-resolution imaging tool has made significant breakthroughs in cell biology. Traditional EM techniques are primarily used for two-dimensional imaging, and although they h...

A Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding

Systematic Evaluation of Euclidean Alignment with Deep Learning for EEG Decoding Background Introduction Electroencephalogram (EEG) signals are widely used in brain-computer interface (BCI) tasks due to their non-invasive nature, portability, and low acquisition cost. However, EEG signals suffer from low signal-to-noise ratio, sensitivity to electr...

Investigating Chiral Morphogenesis of Gold Using Generative Cellular Automata

Using Generative Cellular Automata to Study the Chiral Morphogenesis of Gold Background and Objectives Chirality is ubiquitous in nature and can be transferred and amplified between systems through specific molecular interactions and multi-scale couplings. However, the mechanisms of chiral formation and the critical steps during the growth process ...

DualFluidNet: An Attention-Based Dual-Pipeline Network for Fluid Simulation

Background and Motivation Understanding fluid motion is crucial for comprehension of our environment and our interactions with it in the field of physics. However, traditional fluid simulation methods face limitations in practical applications due to high computational demands. In recent years, physics-driven neural networks have emerged as a promi...

Joint B0 and Image Reconstruction in Low-Field MRI by Physics-Informed Deep-Learning

Joint B0 and Image Reconstruction in Low-Field MRI by Physics-Informed Deep-Learning

Low-Field MRI Image Reconstruction Using Physics-Informed Deep Learning Background: The application of magnetic resonance imaging (MRI) technology in low-field magnetic resonance imaging has gained increasing attention in recent years. Low-field MRI, due to its low cost and simplified maintenance, is considered to have a broad application prospect ...

dvmark: a deep multiscale framework for video watermarking

dvmark: a deep multiscale framework for video watermarking

DVMark: A Multi-Scale Deep Learning Framework for Video Watermarking Video watermarking technology achieves data hiding by embedding information into the cover video. The DVMark model proposed in this paper is a multi-scale video watermarking solution based on deep learning that boasts high robustness and practicality, capable of resisting various ...

Towards Transparent Deep Image Aesthetics Assessment with Tag-based Content Descriptors

Towards Transparent Deep Image Aesthetics Assessment with Tag-based Content Descriptors

Transparent Deep Image Aesthetic Assessment Based on Tag Content Descriptions Academic Background With the proliferation of social media platforms such as Instagram and Flickr, there is an increasing demand for Image Aesthetics Assessment (IAA) models. These models can help social network service providers optimize image ranking or recommendation r...

A bilingual speech neuroprosthesis driven by cortical articulatory representations shared between languages

Bilingual Speech Neuroprosthesis Driven by Cortical Speech Representations Background In the development of neuroprostheses, research on decoding language from brain activity has primarily focused on decoding a single language. Thus, the extent to which bilingual speech production relies on unique or shared cortical activity between different langu...