基于深度学习的实时视觉学习者识别模型

在如今的教育环境中,理解学生的学习风格对提高他们的学习效率至关重要。特别是视觉学习风格(visual learning style)的识别,有助于教师和学生在教学和学习过程中采取更有效的策略。目前,自动识别视觉学习风格主要依靠脑电图(Electroencephalogram, EEG)和机器学习技术。然而,这些技术通常需要离线处理来消除伪影和提取特征,从而限制了其在实时应用中的适用性。 这项由Soyiba Jawed、Ibrahima Faye和Aamir Saeed Malik在《IEEE Transactions on Neural Systems and Rehabilitation Engineering》上发表于2024年的研究,提出了一种基于深度学习技术的实时视觉学习者识别模型,...

多特征注意力卷积神经网络用于运动想象解码

脑机接口(Brain-Computer Interface, BCI)是将神经系统与外部环境连接的一种通讯手段。运动想象(Motor Imagery, MI)是BCI研究的基石,它指在运动执行前的内在演练(Internal Rehearsal)。非侵入性技术如脑电图(Electroencephalography, EEG)因其成本效益高与便利性,可以高时间分辨率记录神经活动。当受试者想象移动身体特定部位时,大脑特定区域会发生能量变化(ERD/ERS),这些变化可以通过EEG记录并用于辨别运动意图。MI基础的BCI系统已经取得显著进展,能够控制外骨骼和光标,特别是与虚拟现实技术结合,用于中风康复的潜力更为显著。 目前,MI解码方法的高性能是这种系统成功的关键。然而,相比于依赖外部刺激的其它BC...

EISATC-Fusion 模型用于运动想象EEG解码

EISATC-Fusion 模型用于运动想象EEG解码

研究背景 脑机接口技术(brain-computer interface, BCI)可以实现大脑与外部设备的直接通信,广泛应用于人机交互、运动康复、医疗等领域。BCI的常见范式包括稳态视觉诱发电位(steady-state visual evoked potentials, SSVEP)、P300、运动想象(motor imagery, MI)等。其中,MI-BCI因其广泛应用前景而备受关注。 MI-BCI通常使用脑电图(electroencephalography, EEG)信号检测运动想象,使得用户能够通过想象运动来控制设备,如电动轮椅、光标和上肢机器人。然而,脑活动的不稳定性和低信噪比(signal-to-noise ratio, SNR),以及个体间信号的差异和EEG信道间的相关性,...

基于Transformer的深度学习网络与时空信息结合的原始EEG分类方法

研究背景及目的 近年来,脑机接口(Brain-Computer Interface,BCI)系统在神经工程和神经科学领域广泛应用,而脑电图(Electroencephalogram,EEG)作为反映中枢神经系统不同神经元群体活动的数据工具,已经成为这些领域中核心的研究内容。然而,EEG信号具有低空间分辨率、高时间分辨率、低信噪比以及个体差异大等特征,这些都为信号处理和准确分类带来了极大的挑战。尤其在运动想象(Motor Imagery,MI)这一EEG-BCI系统常用范式中,准确分类不同MI任务的EEG信号对于BCI系统的功能恢复和康复具有重要意义。 传统的MI-EEG分类方法通常基于手工特征提取和分类,但这些方法可能在特征提取阶段丢失EEG的有用信息。近年来,深度学习模型因其自动特征提取和...

通过肌电控制的机器人手训练揭示慢性中风中双侧脑半球平衡恢复的神经机制

通过肌电控制的机器人手训练揭示慢性中风中双侧脑半球平衡恢复的神经机制

通过EMG驱动的机器人手训练揭示慢性中风患者跨半球平衡恢复的神经机制:来自动态因果建模的见解 中风是一种常见的致残原因,其中大部分中风幸存者会患上上肢瘫痪。上肢功能受损的后果可持续六个月以上,只有少数中风幸存者 (少于12%) 能完全康复。为了恢复这些患者的日常生活能力,提高他们的生活质量,研究人员一直致力于开发中风后运动康复方案。 近年来,使用机器人辅助装置进行上肢康复的研究引起了广泛关注。机器人康复提供了一种一致、密集且互动的训练体验,能够吸引患者积极参与。综合分析显示,接受机器人辅助训练的个体在上肢的Fugl-Meyer 评估 (FMA-UE) 分数以及上肢的功能活动方面都有显著改善。然而,针对腕部和手部功能的机器人在运动控制和日常生活活动的改善方面效果有限。随着意图驱动机器人的引入,...

基于小波的时间-频谱-注意力相关系数用于运动想象EEG分类

脑机接口(Brain-Computer Interface, BCI)技术近年来发展迅速,被认为是一种无需通过外周神经和肌肉,仅通过大脑直接控制外部设备的前沿技术。特别是在运动想象(Motor Imagery, MI)脑电图(Electroencephalography, EEG)应用中,BCI 技术展现了巨大的潜力。通过分析MI-EEG信号,可以帮助患有物理障碍或神经肌肉退化的病人提高生活质量。然而,由于个体之间的差异以及大脑活动的稳定性、低信噪比(Signal-to-Noise Ratio, SNR)等因素,如何从复杂的EEG信号中提取有效特征以提高MI-EEG分类系统的准确性,仍然是一个巨大的挑战。 在MI-EEG分类中,特征提取与表示是决定分类性能的关键。当前广泛使用的特征提取方法,...

基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

基于注意力的双尺度融合卷积神经网络用于运动想象脑机接口

脑机接口(Brain-Computer Interface, BCI)作为一种新增强通信与控制技术近年来逐渐崭露头角。基于电生理特征(如脑电图,EEG)的BCI中,运动想象(Motor Imagery, MI)是一个重要分支,通过解码用户的运动意图用于临床康复、智能轮椅控制、及光标控制等领域。然而,由于EEG信号的复杂性,如低信噪比(Signal-to-Noise Ratio, SNR)、非平稳性、低空间分辨率和高时间分辨率等特点,准确解码运动意图仍具有挑战性。现有的MI基BCI解码主要使用传统机器学习和深度学习方法。传统机器学习通常分为特征提取和特征分类两个独立步骤,方法包括快速傅里叶变换(Fast Fourier Transform, FFT)、通用空间模式(Common Spatial...

基于注意力机制深度学习的单通道脑电图睡眠分期分类方法

电子电气工程师学会 (IEEE)《神经系统与康复工程事务》2021年第29卷刊登了一篇题为《一种基于注意力深度学习的单通道EEG睡眠阶段分类方法》的文章。本文由Emadeldeen Edele、Zhenghua Chen、Chengyu Liu、Min Wu、Chee-Keong Kwoh、Xiaoli Li及Cuntai Guan等学者撰写。文章的主要目的是提出一种新型的基于注意力的深度学习模型,用于通过单通道的脑电图(EEG)信号进行自动睡眠阶段分类。 研究背景 睡眠是人类重要的生理过程,直接影响到每日生活的各个方面。有研究表明,高质量的睡眠能够促进身体健康和脑功能的提升,而睡眠中断则可能导致失眠或睡眠呼吸暂停等睡眠障碍。睡眠阶段(如浅睡和深睡)对免疫系统、记忆和代谢等起着关键作用,因此...

听觉记忆识别与预测编码的大脑时空层次结构

听觉记忆识别与预测编码的大脑时空层次结构

听觉记忆识别与预测编码的大脑时空层次结构 背景介绍 本研究旨在探索人类脑在识别之前记忆的音乐序列及其系统性变化时的层次性脑机制。虽然有关视空模式的神经处理已经进行了广泛研究,但对意识识别听觉序列及其关联的预测误差的理解依然不足。听觉系统从随时间发展形成的模式和序列中提取信息,为理解大脑的时间层次提供了独特的机会。相关研究推测大脑通过预测编码理论(Predictive Coding Theory,PCT)不断更新内部模型来预测外界信息和刺激。 研究来源 本文作者包括L. Bonetti, G. Fernández-Rubio, F. Carlomagno, M. Dietz, D. Pantazis, P. Vuust和M. L. Kringelbach,分别来自奥胡斯大学、牛津大学、波洛尼亚...

扩展 OPM-MEG 临床应用:一种高效的牙箍金属伪影自动抑制方法

拓展OPM-MEG在临床中的应用:一种有效自动抑制牙套金属伪影的方法 背景介绍 磁性脑电图(Magnetoencephalography, MEG)是一种通过多通道磁场测量传感器重建大脑神经电流分布和功能网络的技术。MEG相比于电生理学(Electroencephalography, EEG)在源空间分辨率上有显著优势,同时其磁场信号不受颅骨和头皮组织传导的干扰,在时间分辨率上也优于功能性磁共振成像(Functional Magnetic Resonance Imaging, fMRI)。因此,MEG在研究大脑功能与认知、癫痫的临床应用以及神经疾病研究中具有重要地位。 目前,MEG测量主要依赖两种设备:商用超导量子干涉装置(SQUID)和可穿戴光泵磁力计(Optically Pumped M...