基于高阶奇异值分解的高效滤波器剪枝方法

背景介绍 网络剪枝(Network Pruning)是设计高效卷积神经网络(CNNs)模型的重要技术。其通过减少内存占用和计算要求,同时保持或提高总体性能,使得在资源受限设备(如手机或嵌入式系统)上部署CNNs变得可行。当前的假设是许多模型参数过多,即包含大量不必要或冗余的参数,剪枝这些冗余参数可以生成更小且更高效的模型,这不仅适用于资源受限设备,还可以在某些情况下提高模型的泛化能力。 现有的剪枝方法中,滤波器剪枝(Filter Pruning)和权重剪枝(Weight Pruning)都是流行的技术。权重剪枝是一种非结构化剪枝,指根据个别权重的重要性对其进行剪枝而不考虑任何特定的结构或模式。而滤波器剪枝则是结构化剪枝方法的一种,它依据某些标准对整个滤波器进行剪枝,同时保持网络的整体结构。 ...

具有双记忆模块的鲁棒多尺度特征提取框架用于多变量时间序列异常检测

具有双记忆模块的鲁棒多尺度特征提取框架用于多变量时间序列异常检测

随着深度学习技术的快速发展,数据挖掘和人工智能训练技术在实际应用中的重要性日益显现。尤其在多变量时间序列异常检测领域,现有方法尽管表现出色,但在面对含有噪声或污染的数据时,依旧存在显著的问题。基于此,本文提出了一种具有双内存模块的多尺度特征提取框架,用以解决上述挑战性问题。 研究背景 多变量时间序列(Multivariate Time Series, MTS)数据通常涉及多个传感器在物联网(IoT)应用中的实时运行状态。有效分析这些数据能够揭示隐藏的信息,对异常情况进行预警,以确保系统的安全运行。然而传统的异常检测方法,如局部异常因子(Local Outlier Factor, LOF)、单一分类支持向量机(One-Class Support Vector Machine, OCSVM)和孤...

耦合神经网络间歇性随机扰动下的快速同步控制及加密解密应用

耦合神经网络间歇性随机扰动下的快速同步控制及加密解密应用 一、背景及研究动机 近年来,神经网络被广泛应用于各种领域,包括数据分类、图像识别及组合优化问题等。在神经网络结构和性能方面,可以将其分为确定性神经网络和随机性神经网络。许多研究表明,加入噪声扰动的随机神经网络展示出比确定性神经网络更好的动态特性,即通过构建具有随机扰动的网络,可以更真实地模拟实际神经网络的模型。然而,当前大多数神经网络的研究主要集中在全时扰动模型上,尽管实际生活中更多的是间歇性随机扰动现象。 二、论文来源 这篇名为《Fast synchronization control and application for encryption-decryption of coupled neural networks with ...

自适应采样人工实际控制在约束系统非零和博弈中的应用

自适应采样人工实际控制在约束系统非零和博弈中的应用 背景 在现代工业和科研领域中,智能技术和控制系统的迅速发展,使得传统的控制方法难以满足保证系统稳定性和最小化能耗的严格要求。实际系统通常非常复杂,至少包含两个控制单元,并存在组件之间错综复杂的竞争与合作关系。这种情况下,设计的控制方案不仅要考虑单个控制器的效益最大化,还要实现全局优化。这类问题通常被视为非零和博弈(Non-Zero-Sum Games,NZSG),在多物理输入约束条件下,处理系统耦合动态是一个重要的研究难题。 论文来源 本文题为《Adaptive Sampling Artificial-Actual Control for Non-Zero-Sum Games of Constrained Systems》由Lu Liu和R...

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦

多尺度视觉中枢引导的多模态神经机器翻译:文本感知的跨模态对比解耦 学术背景 多模态神经机器翻译(Multi-Modal Neural Machine Translation, MNMT)旨在将语言无关的视觉信息引入文本以提升机器翻译的性能。然而,由于图像和文本在模态上的显著差异,这两者之间不可避免会出现语义不匹配的问题。解决这些问题的目标在于通过使用分解的多尺度视觉信息作为跨语言中枢,提高不同语言之间的对齐,从而改进MNMT的表现。 论文来源 这篇论文由朱俊俊、苏瑞和叶俊杰等研究人员撰写,作者分别来自昆明理工大学信息工程与自动化学院、云南大学信息科学与工程学院以及云南省人工智能重点实验室。论文将在2024年发表于著名期刊”Neural Networks”。 研究流程 研究工作主要分为以下几个...

具备完全神经形态视觉与控制的自动驾驶飞行器

具备完全神经形态视觉与控制的自动驾驶飞行器

具备完全神经形态视觉与控制的自动驾驶飞行器 背景与研究动机 过去十年间,深度人工神经网络(ANNs)在人工智能领域取得了巨大进步,特别是在视觉处理方面。然而,这些先进的视觉处理技术在实现高精确度的同时,往往需要大量且耗能的计算资源,这使得其在小型飞行机器人等资源受限的情况下难以应用。 针对这一问题,神经形态硬件通过模仿生物大脑的稀疏、异步特性,实现了更高效的感知与处理能力。在机器人领域,神经形态硬件中的事件驱动相机和脉冲神经网络(SNNs)具有低延迟、低能耗的潜力。然而,当前嵌入式神经形态处理器的限制和脉冲神经网络训练的挑战使得这些技术主要应用于低维度的感知和动作任务。 为解决这些问题,本文展示了一个全神经形态的视觉到控制的流水线,用于控制飞行中的无人机。具体而言,我们训练了一个脉冲神经网络...

深度强化学习为双足机器人赋能敏捷的足球技能

深度强化学习为双足机器人赋能敏捷的足球技能

深度强化学习为双足机器人赋能敏捷的足球技能 背景介绍 智能体在物理世界中展现出敏捷、灵活和理解能力,是人工智能(Artificial Intelligence,AI)研究长期以来的目标之一。然而,动物和人类不仅能流畅地完成复杂的身体动作,还能感知和理解环境,并通过身体在世界中实现复杂的目标。从历史上看,创造具有复杂运动能力的智能化身体代理的尝试由来已久,无论是在仿真环境中还是在现实中。伴随近几年技术的加速进步,尤其是基于学习的方法对这一领域的推进,深度强化学习(Deep Reinforcement Learning,Deep RL)已经证明其能够高效解决复杂的运动控制问题,无论是对于仿真角色还是物理机器人。 然而,对于人形和双足机器人,由于其在稳定性、机器人安全性、自由度数量和硬件可用性方面...

能够自主导航行走的轮腿机器人

能够自主导航行走的轮腿机器人

能够自主导航行走的轮腿机器人 背景介绍 城市化进程的加速让供应链物流尤其是最后一公里配送面临巨大挑战。随着交通压力增加和对更快配送服务需求的上升,尤其是室内和街道上的复杂路线给配送带来了难以解决的问题。传统的轮式机器人难以跨越复杂的障碍物,而仅靠腿式系统又无法达到所需的速度和效率。例如,ANYmal机器人虽具备一定的移动能力,但其最大行驶速度仅为平均人行速度的一半,且续航时间也有限。因此,需开发一种即能在平坦地面上高效运动又能跨越障碍物的机器人系统成为了研究的主要方向。 本文主要研究的是轮腿机器人,结合轮子和腿部的优势,使其在长距离运输中既能在中等地面上高速行驶,又能在复杂地形上保持灵活性。 论文来源 本文由Joonho Lee、Marko Bjelonic、Alexander Reske、...

立体人工复眼用于三维空间中的时空感知

立体人工复眼用于三维空间中的时空感知

立体人工复眼用于三维空间的时空感知 本研究文章发表在2024年5月15日的《Science Robotics》期刊上,题为“立体人工复眼用于三维空间的时空感知(Stereoscopic Artificial Compound Eyes for Spatiotemporal Perception in Three-Dimensional Space)”,第一作者为Byungjoon Bae,指导作者为Kyusang Lee。研究团队主要来自University of Virginia的电气与计算机工程系和材料科学与工程系。 研究背景 在自然界中,节肢动物(arthropods)的复眼是非常有效的生物视觉系统,具备广阔的视野(Field of View, FOV)和高运动敏感度,而祷蛾(mant...

基于强化学习实现的现实世界人形机器人行走

基于强化学习实现的现实世界人形机器人行走

基于强化学习实现的现实世界人形机器人行走 背景介绍 人形机器人在多样化环境中自主操作的潜力巨大,不仅可缓解工厂里的劳动力短缺,还能帮助居家老人并开拓新行星。尽管经典控制器在某些场景下显示出色的效果,但在新环境中的推广和适应性仍是一个重大挑战。为此,本文提出了一种完全基于学习的方法用于实际世界中的人形机器人运动控制。 研究动机 经典控制方法在实现稳定和鲁棒的运动控制方面有很大进展,但其适应性和通用性受限。而基于学习的方法由于能从多样化的模拟或实际环境中学习,逐渐受到更多关注。本文旨在通过使用强化学习训练一种基于Transformer网络的控制器,实现人形机器人在复杂环境中的运动控制。 作者与出版信息 本文由Ilija Radosavovic, Tete Xiao, Bike Zhang, Tr...