Mechanistic Insights into Inactivating Mutations in the Proton-Coupled Folate Transporter (SLC46A1), and Compensatory Mutations that Restore Function

Research Background and Problem Statement Hereditary Folate Malabsorption (HFM) is a rare autosomal recessive disorder characterized by impaired intestinal absorption of folates and hindered transport across the choroid plexus into cerebrospinal fluid. This disease is caused by inactivating mutations in the gene encoding the Proton-Coupled Folate T...

Multi-Task Aquatic Toxicity Prediction Model Based on Multi-Level Features Fusion

Academic Background With the growing threat of organic compounds to environmental pollution, studying the toxic responses of different aquatic organisms to these compounds has become crucial. Such research not only helps assess the potential ecological impacts of pollutants on the overall aquatic ecosystem but also provides significant scientific f...

Decoupled Peak Property Learning for Efficient and Interpretable Electronic Circular Dichroism Spectrum Prediction

Efficient and Interpretable Electronic Circular Dichroism Spectrum Prediction: Decoupled Peak Property Learning Academic Background Electronic Circular Dichroism (ECD) spectroscopy is a crucial tool for studying molecular chirality, particularly in asymmetric organic synthesis and the pharmaceutical industry, where it is used to distinguish the abs...

Approaching Coupled-Cluster Accuracy for Molecular Electronic Structures with Multi-Task Learning

Machine Learning Boosts Quantum Chemistry: Predicting Molecular Electronic Structures Approaching Coupled-Cluster Accuracy Academic Background In physics, chemistry, and materials science, computational methods are key tools for uncovering the mechanisms behind diverse physical phenomena and accelerating materials design. However, quantum chemistry...

Spin-Symmetry-Enforced Solution of the Many-Body Schrödinger Equation with a Deep Neural Network

Research on Deep Learning Framework for Spin-Symmetry-Enforced Solutions to the Many-Body Schrödinger Equation: A Groundbreaking Achievement In the fields of quantum physics and quantum chemistry, the description of many-body electron systems has always been an important yet highly challenging topic. Accurately characterizing strong electron-electr...

Mechanism of Proton Release During Water Oxidation in Photosystem II

Mechanism of Proton Release during Water Oxidation in Photosystem II Academic Background Photosystem II (PSII) is the only enzyme in nature capable of catalyzing water splitting, a reaction that not only releases oxygen but also provides electrons for biomass synthesis. The water-splitting reaction releases protons into the thylakoid lumen, forming...

Accelerating Ionizable Lipid Discovery for mRNA Delivery Using Machine Learning and Combinatorial Chemistry

Accelerating the Discovery of Ionizable Lipids for mRNA Delivery using Machine Learning and Combinatorial Chemistry Research Background To fully realize the potential of mRNA therapies, it is essential to expand the toolkit of lipid nanoparticles (LNPs). However, a key bottleneck in LNP development is identifying new ionizable lipids. Previous stud...

Correlated Electron-Nuclear Dynamics of Photoinduced Water Dissociation on Rutile TiO2

Correlated Electron-Nuclear Dynamics of Photoinduced Water Dissociation on Rutile TiO2

Electron-Nucleus Dynamics Study of Photocatalytic Water Splitting on Rutile Titanium Dioxide Surface Background and Motivation Photocatalytic water splitting is one of the important applications of photocatalytic technology, while titanium dioxide (TiO₂) is a photocatalytic material with significant application potential. Although TiO₂ performs rem...

Exciton Polaron Formation and Hot-Carrier Relaxation in Rigid Dion–Jacobson-Type Two-Dimensional Perovskites

Study Report on the Formation of Exciton Polarons and High Carrier Relaxation in Rigid Dion–Jacobson Type Two-Dimensional Perovskite Two-dimensional organic-inorganic hybrid perovskites (HOIPs) have garnered widespread attention due to their strongly confined exciton states and reduced dielectric screening effects resulting from their two-dimension...

Phase Segregation and Nanoconfined Fluid O2 in a Lithium-Rich Oxide Cathode

Dynamic and Thermodynamic Study of Structural Changes in Lithium-Ion Battery Cathode Materials Academic Background and Research Motivation Lithium-ion batteries are a crucial power source for modern portable electronic devices and electric vehicles, traditionally using layered LiCoO2 cathode materials. However, the ongoing demand for high energy de...