Light-Emitting Diodes Based on Intercalated Transition Metal Dichalcogenides with Suppressed Efficiency Roll-Off at High Generation Rates

Research Report on Light-emitting Diodes Based on Intercalated Transition Metal Dichalcogenides with Suppressed Efficiency Roll-off at High Generation Rates Background and Research Significance In recent years, light-emitting diodes (LEDs) based on two-dimensional (2D) materials have shown promising applications in fields such as display technology...

Fractional Quantum Hall Phases in High-Mobility n-Type Molybdenum Disulfide Transistors

Research Report on the Paper on Fractional Quantum Hall Phases in High Mobility n-Type Molybdenum Disulfide Transistors Background and Motivation At low temperatures, field-effect transistors (FETs) based on semiconducting transition metal dichalcogenides (TMDs) theoretically provide high carrier mobility, strong spin-orbit coupling, and intrinsic ...

CMOS-Compatible Strain Engineering for Monolayer Semiconductor Transistors

CMOS-Compatible Strain Engineering in Monolayer Semiconductor Transistors Academic Background With the continuous advancement of semiconductor technology, two-dimensional (2D) materials have garnered significant attention for their atomic-level thinness, which makes them ideal for high-density, low-power electronic devices. Among them, transition m...

High Sound Pressure Piezoelectric Micromachined Ultrasonic Transducers Using Sputtered Potassium Sodium Niobate

Advances in High Sound Pressure Piezoelectric Micromachined Ultrasonic Transducers Academic Background Ultrasonic transducers are widely used in object detection, non-destructive testing (NDT), biomedical imaging, and therapeutic treatments. Compared to traditional bulk ultrasonic transducers, piezoelectric micromachined ultrasonic transducers (PMU...

Study on the Piezoresistivity of Cr-Doped V2O3 Thin Film for MEMS Sensor Applications

Study on the Piezoresistivity of Cr-Doped V₂O₃ Thin Film for MEMS Sensor Applications Academic Background Piezoresistive microelectromechanical systems (MEMS) sensors are devices that utilize the piezoresistive effect of a material to convert stress changes, induced by the physical property being observed, into resistance changes. These sensors, su...

A Microgripper Based on Electrothermal Al–SiO2 Bimorphs

Research on Electrothermally Driven Al-SiO₂ Bimorph Microgripper Academic Background Microgrippers play a crucial role in assembly and manipulation at the micro and nano scales, with wide applications in microelectronics, MEMS (Micro-Electro-Mechanical Systems), and biomedical engineering. To ensure the safe handling of delicate materials and micro...

Scalable Production of Ultraflat and Ultraflexible Diamond Membrane

Scalable Production of Ultraflat and Ultraflexible Diamond Membranes Academic Background Diamond, as a material with exceptional physical properties, holds significant potential in various fields such as electronics, photonics, mechanics, thermotics, and acoustics. However, despite substantial progress in diamond research over the past decades, the...

Growth-Based Monolithic 3D Integration of Single-Crystal 2D Semiconductors

Research on Growth-Based Monolithic 3D Integration of Single-Crystal 2D Semiconductors Academic Background With the rapid development of the modern electronics industry, three-dimensional (3D) integration technology has gradually become an important means to enhance the performance of electronic devices. Traditional two-dimensional (2D) integrated ...

Ultra-Narrow-Linewidth Hybrid-Integrated Self-Injection Locked Laser at 780 nm

Research Report on Hybrid Integrated Ultra-Narrow Linewidth Self-Injection Locking 780nm Laser Background In modern technology, narrow linewidth lasers play an essential role in various applications, including classical and quantum sensing, ion trap systems, positioning/navigation/timing systems, optical clocks, and microwave frequency synthesizers...

Low Loss Fiber-Coupled Volumetric Interconnects Fabricated via Direct Laser Writing

Background Introduction Photon integrated circuits (PICs) are significant for achieving high-speed data transmission. However, traditional photon integrated circuits, which only use a single plane or a limited number of stacked planes, are restricted in optical signal routing. Additionally, coupling losses need to be as low as possible for practica...