DeepDTI:使用深度学习的高保真六方向扩散张量成像

DeepDTI:使用深度学习的高保真六方向扩散张量成像

DeepDTI:使用深度学习实现高保真六方向扩散张量成像 研究背景及研究动机 扩散张量磁共振成像(Diffusion Tensor Imaging, DTI)在活体人脑组织微结构和结构连接性映射方面具有无可比拟的优势。然而,传统的DTI技术因为角度采样的要求导致扫描时间过长,制约了其在常规临床实践和大规模研究中的应用。为了克服这一瓶颈,研究者们开发了一种新的DTI处理框架,称为DeepDTI,通过数据驱动的监督深度学习最小化DTI的数据需求。本文的目的在于展示如何使用DeepDTI显著减少DTI的采样数据量,从而实现更快的扫描速度,同时保持高质量的成像结果。 论文来源 这篇论文的主要作者包括Qiyuan Tian, Berkin Bilgic, Qiuyun Fan, Congyu Liao...

基于深度学习和语音合成的神经语音解码框架

基于深度学习和语音合成的神经语音解码框架

神经科学研究获重大突破:深度学习技术实现从脑电信号解码出自然语音 纽约大学一个跨学科研究团队最近在神经科学和人工智能界取得重大突破。他们开发出一种基于深度学习的新框架,能够直接从人脑的神经信号中解码并合成出自然的人声。这项创新性成果有望为失语和失音症患者研发出新一代语音类脑机接口。 研究动机 语音障碍严重影响患者的社交和生活质量。过去几十年,研究人员一直致力于开发能从大脑解码并合成语音的神经假体,以帮助这些患者重建交流能力。然而,由于训练所需的大脑和语音数据的稀缺性、语音生成过程的复杂性和高维度性,构建高性能语音解码系统一直是个巨大的挑战。 研究成果精髓 该团队提出了一种创新的基于深度学习的语音解码框架,核心包括两个模块:(1)一个”脑电解码器”,将植入大脑皮层的电极阵列(ECoG)采集的脑...