深度学习结合乳腺X光检查和超声图像预测密集乳腺女性BI-RADS 4a病变的恶性程度

用深度学习结合乳腺X线摄影和超声图像预测密乳腺女性BI-RADS US 4A病变恶性度的诊断研究 背景介绍 乳腺癌是女性最常见的恶性肿瘤,具有较高的发病率和死亡率。先前的研究发现密乳腺女性更容易患上乳腺癌。研究指示,亚洲女性的乳腺密度普遍高于非洲裔和白人女性,故对高乳腺密度的亚洲女性进行研究显得尤为重要。 乳腺X线摄影(MG)被认为是筛查乳腺癌的重要手段,并据称能降低30%的乳腺癌相关死亡率。然而,MG在检测密乳腺女性的乳腺病变时表现较差,其敏感性下降至48%-85%,主要由于腺体遮挡等问题。在这种情况下,超声(US)在筛查和诊断密乳腺女性时扮演着不可或缺的角色。对密乳腺患者进行US与MG联合检查可以提高检测率。一个荟萃分析显示,US作为MG的补充手段可以使无症状乳腺癌的检测率平均提高40%...

基于人工智能的乳腺病变分类

基于人工智能的乳腺病变分类多中心研究 在乳腺癌领域,早期诊断对于提高治疗效果和生存率至关重要。乳腺癌主要分为原位癌和浸润性癌两类,这两类癌症在治疗策略和预后上存在显著差异。原位癌的腋窝受累发生率较低(1-2%),不推荐进行前哨淋巴结活检(SLNB);而对于浸润性癌症,SLNB或腋窝淋巴结清扫(ALND)是必要的。因此,能够在术前准确区分良性、恶性以及原位和浸润癌症显得格外重要。 对比增强乳腺摄影(CEM)是一种新兴的技术,因其能够体现病变的血管特性而在临床应用中日益广泛。然而,CEM在诊断乳腺癌方面尽管对恶性病变具有高敏感性,但其特异性却不尽如人意(66-84%)。此外,传统影像学检查的解释还会受到放射科医生经验的影响,不同的放射科医生之间存在较大的差异。因此,开发一种自动、可靠,并且能够在...

利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜

利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜

利用基于扩散模型的深度学习算法增强超结构成像与体积电子显微镜 背景介绍 电子显微镜(Electron Microscopy,简称EM)作为一种高分辨率成像工具,对细胞生物学取得了重大突破。传统的EM技术主要用于二维成像,尽管已经揭示了复杂的纳米级别细胞结构,但在研究三维(3D)结构时存在一定局限性。体积电子显微镜(Volume Electron Microscopy,简称VEM)作为一种更为先进的技术,通过串联切片和断层扫描技术(如透射电子显微镜TEM和扫描电子显微镜SEM)实现了细胞和组织的3D成像,可以提取细胞、组织甚至小模型生物体的纳米级3D结构。 尽管VEM技术突破了传统二维EM的局限性,但其成像速度和质量之间存在固有的权衡关系,导致成像区域和体积的限制。此外,生成各向同性(isot...

系统评估欧几里德对齐与深度学习在EEG解码中的应用

系统评估欧几里德对齐与深度学习在EEG解码中的应用 背景介绍 脑电图(EEG)信号由于其无创性、便携性和低采集成本,广泛用于脑机接口(BCI)任务。然而,EEG信号存在低信噪比、易受电极位置影响及空间分辨率差等缺点。随着深度学习(DL)技术的进展,该技术在BCI领域表现出色,甚至在某些情况下超过了传统的机器学习方法。然而,DL模型对数据需求量大是其主要障碍。多受试者数据的迁移学习(Transfer Learning, TL)通过共享数据能够更高效地训练DL模型。欧几里得对齐(Euclidean Alignment,EA)因其易用性、低计算复杂度和与DL模型兼容性,逐渐受到关注。但现有研究对EA结合DL的全局和个体模型训练效果评估较少。这篇论文旨在系统性评估EA和DL结合对BCI信号解码训练性...

基于EEG信号检测重度抑郁症的图卷积Transformer网络GCTNet

GCTNet:基于EEG信号检测重度抑郁症的图卷积Transformer网络 研究背景 重度抑郁症(Major Depressive Disorder, MDD)是一种普遍的精神疾病,其特征是显著且持续的低落情绪,全球约有超过3.5亿人受到影响。MDD是导致自杀的主要原因之一,每年约有80万人因此丧生。当前MDD的诊断主要依赖于患者的自我报告和临床医生的专业判断。然而,诊断过程的主观性可能会导致不同医生之间的一致性较低,从而可能产生不准确的诊断。研究发现,被诊断为MDD的一般医生的正确率仅为47.3%。因此,探索客观可靠的生理指标,并采用有效的方法及时识别MDD,对于促进早期诊断和干预至关重要。 论文来源 本论文由Beijing Advanced Innovation Center for ...

使用生成细胞自动机研究金的手性形态发生

使用生成细胞自动机研究金的手性形态发生 背景与研究目的 手性(chirality)在自然界中无处不在,并且可以通过特定的分子相互作用和多尺度耦合在系统间传递和放大。然而,手性形成的机制以及生长过程中的关键步骤尚未完全理解。在本研究中,我们通过训练基于实验结果的生成细胞自动机(cellular automata, CA)人工神经网络,识别从非手性到手性形态的金纳米粒子的两种可区分的途径。手性最初由沿对映异构高指数平面边界的不对称生长的性质所决定。基于深度学习的手性形态生成解释不仅提供了理论理解,还允许我们预测前所未有的交叉路径及其结果形态。 作者与机构 本文由Sang Won Im、Dongsu Zhang、Jeong Hyun Han、Ryeong Myeong Kim、Changwoon ...

一种用于流体模拟的基于注意力机制的双流水线网络

背景与研究动因 在物理学中,了解流体运动对于理解我们的环境以及我们如何与其进行交互至关重要。然而,传统的流体模拟方法由于其高计算需求,在实际应用中存在局限性。近年来,物理学驱动的神经网络被认为是一种有前途的数据驱动方法来理解复杂的自然现象。本文的作者受到平滑粒子流体动力学(SPH)方法的启发,提出了一种基于注意力机制的双管道网络架构——DualFluidNet,用于解决流体模拟中的全局控制和物理定律约束之间平衡的问题。 论文信息来源 本文由来自西安交通大学软件工程学院的Yu Chen、Shuai Zheng、Menglong Jin、Yan Chang和Nianyi Wang撰写,发表在2024年《Neural Networks》期刊上。该论文提出并探讨了一种创新的3D流体模拟方法。 研究方...

基于噪声生成和成像机制的隐式正则化学习网络用于低剂量CT重建

基于噪声生成和成像机制的隐式正则化学习网络用于低剂量CT重建

基于噪声生成和成像机制的隐式正则化学习网络在低剂量CT重建中的应用 低剂量计算机断层扫描(Low-Dose Computed Tomography,LDCT)已成为现代医学成像的重要工具,旨在降低放射性风险并保持图像质量。然而,降低X射线剂量常导致数据受损并引起反投影(FBP)重建不良,进而影响图像质量。为了应对这一问题,研究人员不断开发高级算法以在减少噪声和伪影的同时获取高质量图像。本次报道将详细介绍一项新的研究成果,旨在实现高性能的LDCT重建。 背景介绍 在X射线CT成像中,减少辐射剂量一直是追求的目标,通过降低X射线管电流和/或电压,稀疏视图以及限制角度扫描来实现。然而,这些成像协议可能导致数据损坏和不稳定重建,从而使用经典的FBP算法得到的图像质量较差。因此,开发新的高质量重建算法...

通过互相增强的跨模态图像生成与配准方法进行未对齐PAT和MRI图像的无监督融合

通过互相增强的跨模态图像生成与配准方法进行未对齐PAT和MRI图像的无监督融合 背景和研究目的 近年来,光声断层成像(Photoacoustic Tomography, PAT)和磁共振成像(Magnetic Resonance Imaging, MRI)作为前沿的生物医学成像技术在临床前研究中广泛应用。PAT能够提供高光学对比度和深层成像,但软组织对比度较差;而MRI具有优异的软组织成像能力,但时间分辨率较低。尽管多模态数据融合方面取得了一定进展,但由于图像未对准和空间失真的问题,PAT和MRI图像融合仍具有挑战性。 为了解决这些问题,本文作者提出了一种称为PAMRFuse的分阶段深度学习框架,重点在于未对准的PAT和MRI图像融合。该框架包括一个多模态到单模态的配准网络,用于准确对准输入...

利用基于物理知识的深度学习实现低场强MRI图像重建

利用基于物理知识的深度学习实现低场强MRI图像重建

利用基于物理知识的深度学习实现低场强MRI图像重建 背景介绍: 磁共振成像(MRI)技术近年来在低场磁共振成像中的应用越来越受到关注。低场MRI由于其成本低、维护简便,被认为在各种临床和研究环境中具有广泛的应用前景。例如,便携式低场MRI扫描仪不仅更容易操作,还可用于应急单位和手术室等场景。此外,初步评估表明低场MRI在中风诊断中具有潜在的临床应用,这使得该技术在全球医疗诊断中更具吸引力。然而,低场MRI的主要挑战包括低信噪比(SNR)和由磁体设计、材料缺陷和制造公差引起的强B0场不均匀性。 本研究由David Schote, Lukas Winter, Christoph Kolbitsch, Georg Rose, Oliver Speck和Andreas Kofler等学者完成,发表于...