GCLink:一种用于基因调控网络推断的图对比链接预测框架
研究背景 基因调控网络(Gene Regulatory Networks, GRNs)是理解细胞内复杂生物过程的关键工具。它揭示了转录因子(Transcription Factors, TFs)与靶基因之间的相互作用,从而控制基因的转录过程,进而调控细胞行为。随着单细胞RNA测序(single-cell RNA-sequencing, scRNA-seq)技术的发展,研究者能够在单细胞分辨率下获取基因表达数据,这为GRNs的推断提供了前所未有的机会。然而,scRNA-seq数据的稀疏性和高变异性为GRNs的推断带来了巨大挑战。 现有的GRN推断方法主要分为两类:基于相关性或互信息的无监督学习方法,以及基于机器学习的监督学习方法。尽管这些方法在某些情况下表现出色,但它们往往依赖于成对基因的相关...