Méthode d'apprentissage profond basée sur la diffusion pour augmenter l'imagerie ultrastructurale et la microscopie électronique en volume

Méthode d'apprentissage profond basée sur la diffusion pour augmenter l'imagerie ultrastructurale et la microscopie électronique en volume

Amélioration de l’imagerie super-structurelle et de la microscopie électronique volumique via des algorithmes d’apprentissage profond basés sur les modèles de diffusion Introduction La microscopie électronique (Electron Microscopy, abrégée EM) en tant qu’outil d’imagerie à haute résolution a permis des percées majeures en biologie cellulaire. Les t...

Un nouveau pipeline de segmentation d'image basé sur CNN pour la modélisation de la stimulation de la moelle épinière féline individualisée

Pipeline de segmentation d’images basée sur les réseaux de neurones convolutifs (CNN) pour la modélisation de stimulation individualisée de la moelle épinière féline Contexte et motivation de la recherche La stimulation de la moelle épinière (Spinal Cord Stimulation, SCS) est une méthode thérapeutique largement utilisée pour la gestion de la douleu...

Réseau d'apprentissage de la structure du graphe guidé par l'attention pour la détection de l'attention auditive activée par EEG

Réseau d'apprentissage de la structure du graphe guidé par l'attention pour la détection de l'attention auditive activée par EEG

Application du réseau d’apprentissage de structure de graphe guidée par l’attention pour la détection de l’attention auditive basée sur l’EEG Contexte académique L’«effet cocktail party» décrit la capacité du cerveau humain à se concentrer sélectivement sur un locuteur et à ignorer les autres dans un environnement multi-locuteurs. Cependant, cette ...

Une évaluation systématique de l'alignement euclidien avec l'apprentissage profond pour le décodage EEG

Évaluation systématique de l’alignement euclidien avec l’apprentissage profond pour le décodage de l’EEG Introduction Les signaux électroencéphalographiques (EEG) sont largement utilisés dans les interfaces cerveau-machine (BCI) en raison de leur nature non invasive, de leur portabilité et de leur faible coût d’acquisition. Cependant, les signaux E...

Estimation Bayésienne des Composants de Potentiel Évoqué de Groupe : Test d'un Modèle pour des Jeux de Données Synthétiques et Réels

Rapport de synthèse sur un article scientifique Introduction L’étude des potentiels évoqués (ERP pour event-related potentials) fournit des informations importantes sur les mécanismes cérébraux, offrant des avantages uniques pour expliquer divers processus psychologiques. Dans ces études, on enregistre généralement l’EEG multicanaux des participant...

La connectivité fonctionnelle neuronale est altérée de manière dépendante de la couche près des microélectrodes intracorticales implantées chroniquement dans les souris sauvages de type C57BL/6

Effets dépendants des couches des électrodes neurales sur la connectivité fonctionnelle neuronale des souris pendant les implantations chroniques Introduction Cette étude explore les effets à long terme des microélectrodes implantées de manière chronique sur la connectivité fonctionnelle neuronale dans le cerveau des souris sauvages C57BL6. Les éle...

GCTNet : un réseau de transformateur de convolution en graphes pour la détection des troubles dépressifs majeurs à partir des signaux EEG

GCTNet:Réseau de Transformateurs à Convolution de Graphe pour la Détection de la Dépression Majeure Basée sur des Signaux EEG Contexte de la Recherche La dépression majeure (Major Depressive Disorder, MDD) est une maladie mentale courante caractérisée par des humeurs dépressives significatives et persistantes, touchant plus de 350 millions de perso...

Une interface cerveau-ordinateur visuelle conviviale basée sur des champs visuels évoqués à l'état stable de fréquence élevée enregistrés par OPM-MEG

Une interface cerveau-ordinateur visuelle conviviale basée sur des champs visuels évoqués à l'état stable de fréquence élevée enregistrés par OPM-MEG

Interface Cerveau-Ordinateur Basée sur le Champ Visuel à Fréquence Élevée Évoqué par Stimulation Visuelle Stable Introduction La technologie des Interfaces Cerveau-Ordinateur (Brain-Computer Interface, BCI) permet aux utilisateurs de contrôler des machines en décodant des signaux cérébraux spécifiques. Bien que les BCI invasives captent des signaux...

Les indices auditifs modulent la dynamique à court terme de l'activité des STN pendant la marche dans la maladie de Parkinson

Les patients atteints de la maladie de Parkinson (Parkinson’s Disease, PD) souffrent généralement de troubles de la démarche, ce qui affecte gravement leur qualité de vie. Des études antérieures ont suggéré que les oscillations dans la bande de fréquence β (15-30 Hz) des noyaux gris centraux pourraient être liées aux troubles de la démarche, mais l...

Apprentissage de la cinématique inverse à l'aide de primitives de calcul neuronales sur du matériel neuromorphique

Utilisation des principes de calcul inspirés du cerveau pour apprendre l’inverse de la dynamique sur matériel neuromorphique Contexte et motivation de la recherche Dans le domaine de la robotique moderne, la réalisation de systèmes de traitement neuromorphique à faible latence pour des agents autonomes peut avoir un immense potentiel. Cependant, la...