Réseaux de Convolution de Graphes Spatio-Temporels Multi-Vue avec Généralisation de Domaine pour la Classification des États de Sommeil

Le classement des phases de sommeil est essentiel pour évaluer la qualité du sommeil et diagnostiquer les maladies. Cependant, les méthodes actuelles de classification rencontrent encore de nombreux défis lorsqu’il s’agit de traiter les caractéristiques spatiales et temporelles des signaux cérébraux multicanaux qui changent avec le temps, de gérer ...

Classification EEG inter-sujets basé sur l'apprentissage ensembliste hétérogène multi-tâches chez les patients victimes d'AVC

Classification EEG inter-sujets basé sur l'apprentissage ensembliste hétérogène multi-tâches chez les patients victimes d'AVC

Introduction L’imagerie motrice (Motor Imagery, MI) fait référence à l’exécution d’une activité par l’imagination sans mouvement musculaire réel. Ce paradigme est largement utilisé dans les interfaces cerveau-machine (Brain-Computer Interface, BCI) pour décoder l’activité cérébrale en commandes de contrôle pour des dispositifs externes. En particul...

Évaluation de la valeur prédictive des modèles de croissance des gliomes pour les gliomes de bas grade après résection tumorale

Étude sur la valeur prédictive des modèles de croissance des gliomes de bas grade après chirurgie Introduction Les gliomes sont des tumeurs cérébrales invasives qui peuvent se propager rapidement dans le cerveau. Comprendre et prédire les modes et les vitesses de cette propagation peut aider à optimiser les traitements. Les modèles de croissance de...

Un CNN d'apprentissage de la dépendance temporelle avec mécanisme d'attention pour le décodage MI-EEG

Un réseau de neurones convolutifs (CNN) de dépendance temporelle basé sur un mécanisme d’attention pour le décodage MI-EEG Contexte de recherche et description du problème Les systèmes d’Interface Cerveau-Machine (Brain-Computer Interface, BCI) offrent une nouvelle voie de communication avec les ordinateurs en traduisant en temps réel les signaux c...

Apprentissage profond informé par la physique pour la modélisation musculo-squelettique: Prédire les forces musculaires et la cinématique des articulations à partir de l'EMG de surface

Les modèles musculosquelettiques ont été largement utilisés pour les analyses biomécaniques car ils peuvent estimer des variables de mouvement difficiles à mesurer directement in vivo (comme les forces musculaires et les moments articulaires). Les modèles musculosquelettiques entraînés de manière traditionnelle par des processus physiques peuvent e...

Modèle d'évaluation basé sur l'apprentissage profond pour l'identification en temps réel des apprenants visuels utilisant l'EEG brut

Dans l’environnement éducatif actuel, comprendre le style d’apprentissage des étudiants est crucial pour améliorer leur efficacité d’apprentissage. En particulier, l’identification des styles d’apprentissage visuels (visual learning style) aide les enseignants et les étudiants à adopter des stratégies plus efficaces dans le processus d’enseignement...

Réseau Neuronal Convolutionnel d'Attention Multi-Caractéristiques pour le Décodage de l'Imagination Motrice

Le Brain-Computer Interface (BCI) est un moyen de communication reliant le système nerveux à l’environnement extérieur. La Motor Imagery (MI) est la fondation de la recherche BCI, elle se réfère à la répétition interne avant l’exécution du mouvement. Les technologies non invasives, telles que l’électroencéphalographie (EEG), permettent d’enregistre...

EISATC-Fusion: Fusion du réseau de convolution temporelle à auto-attention inception pour le décodage EEG de l'imagerie motrice

EISATC-Fusion: Fusion du réseau de convolution temporelle à auto-attention inception pour le décodage EEG de l'imagerie motrice

Contexte de la recherche La technologie d’interface cerveau-ordinateur (brain-computer interface, BCI) permet une communication directe entre le cerveau et les dispositifs externes. Elle est largement utilisée dans des domaines tels que l’interaction homme-machine, la rééducation motrice et la médecine. Les paradigmes courants de BCI incluent le po...

Une approche basée sur le Transformer combinant un réseau d'apprentissage profond et des informations spatio-temporelles pour la classification des EEG bruts

Contexte et Objectif de la Recherche Ces dernières années, les systèmes d’Interface Cerveau-Ordinateur (Brain-Computer Interface, BCI) ont été largement utilisés dans les domaines de l’ingénierie neuronale et des neurosciences, et l’électroencéphalogramme (EEG), en tant qu’outil pour refléter l’activité de différents groupes de neurones du système ...

Coefficient de corrélation temporelle-spectrale d'attention basé sur les ondelettes pour la classification EEG d'imagination motrice

Interface Cerveau-Machine (Brain-Computer Interface, BCI) : Développements et Applications en Imagerie Motrice EEG L’interface cerveau-machine (Brain-Computer Interface, BCI) a progressé rapidement ces dernières années et est considérée comme une technologie de pointe permettant de contrôler des dispositifs externes directement par le cerveau, sans...