DeepSleepNet : Un modèle de classification automatique des stades du sommeil basé sur l'EEG monocanal brut

Réseau de Sommeil Profond : Modèle de Scoring Automatique des Stades de Sommeil Basé sur l’EEG à Canal Unique Introduction Le sommeil a un impact significatif sur la santé humaine, et surveiller la qualité du sommeil est crucial dans la recherche et la pratique médicale. Traditionnellement, les experts en sommeil évaluent les stades du sommeil en a...

Réalité virtuelle immersive pour la rééducation cognitive des survivants d'un AVC

Réalité virtuelle immersive pour la rééducation cognitive des survivants d'un AVC

Ces dernières années, la technologie de réalité virtuelle (VR) est devenue de plus en plus courante, et le prix des équipements matériels associés est devenu plus abordable. Par exemple, les écrans montés sur la tête (Head Mounted Displays, HMDs) disponibles sur le marché offrent désormais une haute résolution d’affichage ainsi qu’un suivi précis d...

Transformateurs de vision, modèle d'ensemble et apprentissage par transfert utilisant l'IA explicable pour la détection et la classification des tumeurs cérébrales

En raison de la forte incidence et de la létalité des tumeurs cérébrales, il est devenu particulièrement important de détecter et de classifier rapidement et précisément les tumeurs cérébrales. Les tumeurs cérébrales incluent des types malins et non malins, et leur croissance anormale peut causer des dommages à long terme au cerveau. L’imagerie par...

Réseaux de Convolution de Graphes Spatio-Temporels Multi-Vue avec Généralisation de Domaine pour la Classification des États de Sommeil

Le classement des phases de sommeil est essentiel pour évaluer la qualité du sommeil et diagnostiquer les maladies. Cependant, les méthodes actuelles de classification rencontrent encore de nombreux défis lorsqu’il s’agit de traiter les caractéristiques spatiales et temporelles des signaux cérébraux multicanaux qui changent avec le temps, de gérer ...

Classification EEG inter-sujets basé sur l'apprentissage ensembliste hétérogène multi-tâches chez les patients victimes d'AVC

Classification EEG inter-sujets basé sur l'apprentissage ensembliste hétérogène multi-tâches chez les patients victimes d'AVC

Introduction L’imagerie motrice (Motor Imagery, MI) fait référence à l’exécution d’une activité par l’imagination sans mouvement musculaire réel. Ce paradigme est largement utilisé dans les interfaces cerveau-machine (Brain-Computer Interface, BCI) pour décoder l’activité cérébrale en commandes de contrôle pour des dispositifs externes. En particul...

Évaluation de la valeur prédictive des modèles de croissance des gliomes pour les gliomes de bas grade après résection tumorale

Étude sur la valeur prédictive des modèles de croissance des gliomes de bas grade après chirurgie Introduction Les gliomes sont des tumeurs cérébrales invasives qui peuvent se propager rapidement dans le cerveau. Comprendre et prédire les modes et les vitesses de cette propagation peut aider à optimiser les traitements. Les modèles de croissance de...

Un CNN d'apprentissage de la dépendance temporelle avec mécanisme d'attention pour le décodage MI-EEG

Un réseau de neurones convolutifs (CNN) de dépendance temporelle basé sur un mécanisme d’attention pour le décodage MI-EEG Contexte de recherche et description du problème Les systèmes d’Interface Cerveau-Machine (Brain-Computer Interface, BCI) offrent une nouvelle voie de communication avec les ordinateurs en traduisant en temps réel les signaux c...

Modèle d'évaluation basé sur l'apprentissage profond pour l'identification en temps réel des apprenants visuels utilisant l'EEG brut

Dans l’environnement éducatif actuel, comprendre le style d’apprentissage des étudiants est crucial pour améliorer leur efficacité d’apprentissage. En particulier, l’identification des styles d’apprentissage visuels (visual learning style) aide les enseignants et les étudiants à adopter des stratégies plus efficaces dans le processus d’enseignement...

La Stimulation Transcutanée de la Moelle Épinière Restaure la Fonction des Mains et des Bras Après une Lésion de la Moelle Épinière

La Stimulation Transcutanée de la Moelle Épinière Restaure la Fonction des Mains et des Bras Après une Lésion de la Moelle Épinière

Les lésions de la moelle épinière (Spinal Cord Injury, SCI) entraînant une paralysie des membres supérieurs affectent considérablement l’indépendance et la qualité de vie des patients. Chez les patients atteints de SCI, la restauration du contrôle des mouvements des mains et des bras est considérée comme l’objectif thérapeutique de la plus haute pr...

Réseau Neuronal Convolutionnel d'Attention Multi-Caractéristiques pour le Décodage de l'Imagination Motrice

Le Brain-Computer Interface (BCI) est un moyen de communication reliant le système nerveux à l’environnement extérieur. La Motor Imagery (MI) est la fondation de la recherche BCI, elle se réfère à la répétition interne avant l’exécution du mouvement. Les technologies non invasives, telles que l’électroencéphalographie (EEG), permettent d’enregistre...