磁気駆動カプセルにおける自己展開シートを用いた標的薬物送達

磁気駆動カプセルにおける自己展開シートを用いたターゲット薬物送達 背景紹介 消化器(Gastrointestinal, GI)疾患、例えば炎症性腸疾患、消化管出血、癌などは、世界的に見ても重要な健康問題です。従来の治療法、例えば内視鏡検査や経口薬物療法は一定の効果がありますが、多くの制約があります。例えば、内視鏡検査は術者の技術に依存し、一度の検査で消化管全体をカバーすることは困難です。経口薬物は消化管内での分解や吸収の制限に直面しています。 これらの問題を解決するために、近年、カプセル内視鏡や薬物送達システムが注目されています。しかし、既存のカプセルシステムは複数の病変のターゲット治療や能動的な移動能力においてまだ不十分です。これに対し、Leeらは2025年に『Device』誌に掲載された...

深層学習強化型金属有機フレームワーク電子皮膚による健康モニタリング

ディープラーニング強化型金属有機構造体(MOF)電子皮膚の健康モニタリングへの応用 学術的背景 電子皮膚(e-skin)は、生理的および環境的刺激を感知し、人間の皮膚の機能を模倣する技術です。近年、電子皮膚はロボット工学、スポーツ科学、医療健康モニタリングなどの分野での応用が期待されています。しかし、現在の電子皮膚技術にはいくつかの課題があります。まず、一つのデバイスで複数の生理信号(バイオ分子、運動信号など)を同時に検出する多機能性の実現。次に、複数の刺激を同時に検出する際に、異なる信号を正確に区別し識別する方法です。 従来の多機能電子皮膚は、通常、複数のセンシング材料を統合する必要があり、製造の複雑さが増すだけでなく、デバイスの性能不安定を引き起こす可能性があります。さらに、既存の電子皮...

投資マイクロキャスティング3Dプリント多メタマテリアルによるプログラム可能な多モーダルバイオミメティックエレクトロニクス

鋳型マイクロキャスティング3Dプリントによるマルチマテリアルバイオミメティック電子デバイスの研究 学術的背景 バイオミメティック電子技術の急速な発展に伴い、人間の感覚機能を模倣する電子皮膚(Electronic Skin, E-skin)や柔軟なセンサーがロボット、医療機器、ヒューマンインターフェースなどの分野で広く応用される可能性を秘めています。しかし、既存のバイオミメティック電子デバイスは、材料選択、構造の複雑さ、機能集約化の面で多くの課題に直面しています。特に、材料性能を損なうことなく、多種多様な難成形材料の自由な組み立てと多機能集約化を実現することが、現在の研究におけるボトルネックとなっています。 伝統的な製造方法、例えばエレクトロスピニング、フォトリソグラフィー、転写印刷などは、材...

全方位液滴振動収穫用浮遊発電機

全方位液滴振動収穫用浮遊発電機

浮遊式全方向液滴振動発電機:画期的な研究 学術的背景 IoT(モノのインターネット)デバイスが海洋環境監視で広く使用されるにつれ、電力網に依存せずにこれらのデバイスに安定した電力を供給する方法が重要な課題となっています。従来の風力や太陽光などの再生可能エネルギー技術は海洋環境では限界があり、摩擦電気ナノ発電機(Triboelectric Nanogenerator, TENG)はその高い機械エネルギー変換効率から有望な解決策と見なされています。しかし、既存のTENGデバイスの多くは固体-固体界面の摩擦に依存しており、摩耗の問題があるため長期使用が制限されています。また、多くの液滴ベースのTENGは単方向のエネルギー収集しかできず、海洋環境の予測不可能な多方向の波に対応できません。 これらの問...

効率的かつ解釈可能な電子円二色性スペクトル予測のための分離ピーク特性学習

効率的かつ解釈可能な電子円二色性スペクトル予測:Decoupled Peak Property Learning 学術的背景 電子円二色性スペクトル(Electronic Circular Dichroism, ECD)は、分子のキラリティを研究するための重要なツールであり、特に不斉有機合成や薬品産業において、キラル分子の絶対配置を区別するために使用されます。しかし、既存のECDスペクトル予測手法には、データの不足と解釈可能性の低さという二つの主要な問題があります。これにより、予測結果の信頼性が低下しています。現在のECDスペクトル予測は、分子構造の抽出、立体配座探索、構造最適化、時間依存密度汎関数理論(TD-DFT)計算、ボルツマン重み付けなどの時間のかかる量子化学計算に依存しています。こ...

インメモリコンピューティングハードウェアを使用した深層ベイジアン能動学習

人工知能(AI)技術の急速な発展に伴い、深層学習は複雑なタスクにおいて顕著な進展を遂げてきました。しかし、深層学習の成功は、大量のラベル付きデータに大きく依存しており、データのラベル付けプロセスは時間がかかる上に、労力がかかり、専門的知識も必要とするため、コストが高いという課題があります。特に、ロボットスキル学習、触媒発見、薬物発見、タンパク質生産最適化などの専門分野では、ラベル付きデータの取得が特に困難で、コストも高くなります。この問題を解決するため、深層ベイジアン能動学習(Deep Bayesian Active Learning, DBAL)が登場しました。DBALは、最も情報量の多いデータを能動的に選択してラベル付けすることで、ラベル付けの効率を大幅に向上させ、限られたラベル付きデー...

形状最適化と形状変化問題のためのプログラマブル環境

形状最適化と形状変形問題のためのプログラマブル環境「Morpho」の開発と応用 学術的背景 ソフトマテリアル(soft materials)は、特にソフトロボティクス、構造流体、バイオマテリアル、粒子媒体などの科学および工学分野において重要な役割を果たしています。これらの材料は、機械的、電磁的、または化学的な刺激を受けると劇的に形状を変化させます。これらの形状変化を理解し予測することは、設計の最適化とその背後にある物理的メカニズムの理解において重要です。しかし、形状最適化問題は通常非常に複雑であり、既存のシミュレーションツールは機能が限られているか、汎用性に欠けるため、研究者はこれらの問題に取り組む際に多くの課題に直面しています。 この課題を解決するために、研究者は形状最適化問題のための汎用...

マルチタスク学習による分子電子構造の結合クラスター精度への接近

機械学習が量子化学を支援:カップリングクラスタ精度に迫る分子電子構造予測 学術的背景 物理学、化学、材料科学の分野において、計算方法はさまざまな物理現象の背後にあるメカニズムを明らかにし、材料設計を加速するための重要なツールです。しかし、量子化学計算(特に電子構造計算)は計算のボトルネックとなり、計算速度とスケーラビリティを制限しています。近年、機械学習手法が分子動力学シミュレーションの高速化と精度向上に顕著な成功を収めていますが、既存の機械学習モデルの多くは密度汎関数理論(DFT)データベースをトレーニングデータの「真値」として使用しており、その予測精度はDFT自体を超えることができません。DFTは平均場理論として、計算において通常いくつかの化学精度(1 kcal/mol)よりも大きな系統...

毒性制御を伴う合理的なリガンド生成のための深層学習アプローチ

深層学習を応用したターゲットタンパクリガンド生成の最新研究:DeepBlockフレームワークの提案と検証 背景と研究課題 薬物発見プロセスにおいて、特定のタンパク質に結合するリガンド分子(ligand)を探索することは重要な課題です。しかし、現在の仮想スクリーニング(virtual screening)では、化合物ライブラリの規模と化学空間の広さに制約され、目標特性に合致する革新的な化合物を見つけることが困難です。これに対し、デノボ薬物設計(de novo drug design)では、新たな分子構造を最初から生成することで、既存の化合物ライブラリを超える化学空間を探索する可能性が開かれています。 近年、深層生成モデル(deep generative models)は、化学分子生成の分野で大...

ディープニューラルネットワークを用いた多体シュレーディンガー方程式のスピン対称強制解法

深層学習フレームワークを用いた多体シュレーディンガー方程式のスピン対称性解法研究:新手法の画期的成果 量子物理学および量子化学の分野において、多体電子系の記述は重要な課題でありながらも非常に困難な問題である。電子間の強い相関を正確に特徴付けることは、触媒、光化学、超伝導性などの分野において特に重要な意義を持つ。しかし、広く使用されているKohn–Sham密度汎関数理論(KS-DFT)などの従来の手法では、多参照系における静的相関の記述に不十分な点が残っている。この不足は「対称性ジレンマ」(symmetry dilemma)として知られる問題を引き起こし、物理的でない状態であるスピン対称性の破れた解がより低いエネルギー結果を得ることがある。さらに、波動関数法は静的相関を捉える点では優れているが...