基于Transformer的对象再识别综述

Transformer for Object Re-Identification: A Survey 背景与研究意义 对象重新识别(Object Re-Identification,简称Re-ID)是一项重要的计算机视觉任务,旨在跨时间和场景识别特定对象。这一领域在深度学习技术的推动下取得了显著进展,尤其是基于卷积神经网络(Convolutional Neural Networks,简称CNNs)的研究。然而,随着视觉Transformer的出现,Re-ID研究开启了新的篇章。本文综述了基于Transformer的Re-ID技术,分析其在图像/视频、少数据/少标注、多模态及特殊应用场景中的优势与挑战。 研究团队与发表信息 本文由来自武汉大学、Sun Yat-Sen University和In...

经颅振荡刺激改善虚拟现实中网络眩晕的频率依赖性研究

利用经颅振荡刺激减少虚拟现实中的网络眩晕 背景与研究动机 虚拟现实(Virtual Reality, VR)技术正日益渗透到工作、医疗和娱乐等领域。然而,约95%的VR用户会经历一种被称为网络眩晕(Cybersickness, CS)的症状,表现为恶心、头晕和不适等。这一现象的根源在于视觉、体感和前庭信息整合的持续不匹配,尤其是在虚拟环境中诱发“自我运动”的错觉(vection)。尽管VR技术的应用广泛,但CS问题却限制了其在医疗康复、军事训练和教育等场景中的广泛采用。为解决这一挑战,研究者开发了通过跨颅交变电流刺激(transcranial alternating current stimulation, tACS)靶向前庭皮层的技术,以尝试缓解CS症状。 研究来源 这项研究由Siena ...

利用条件性蛋白扩散模型生成具有增强活性的人工可编程核酸酶序列

利用条件性蛋白扩散模型生成具有增强活性的人工可编程核酸酶序列

深度学习助力蛋白质设计:基于条件扩散模型的功能蛋白序列生成 蛋白质是生命科学研究和应用的核心,其多样性和功能复杂性为科学家提供了无数可能性。随着深度学习技术的发展,蛋白质设计正迈向一个全新高度。由上海交通大学、剑桥大学等多个机构的科学家联合发表的研究《A conditional protein diffusion model generates artificial programmable endonuclease sequences with enhanced activity》展示了一种名为“条件蛋白扩散模型”(Conditional Protein Diffusion Model, 简称 CPDiffusion)的创新方法,用于设计具有增强功能的人工蛋白质序列。这一研究已发表在《Ce...

基于新型Pix2Pix生成对抗网络增强框架的MRI脑肿瘤分类

增强型基于MRI的脑肿瘤分类研究:一种新颖的Pix2Pix生成对抗网络增强框架 脑肿瘤是全球范围内一种具有高发病率和致死性的重大健康问题。在全球每年新增数以万计的脑肿瘤病例中,患者生存率低,尤其是恶性脑肿瘤更是面临严峻的治疗挑战。如何通过早期诊断与精准分类脑肿瘤以优化治疗策略成为医学研究的重点。然而,传统基于人工分析的影像诊断耗时且易出错,而近年来快速发展的人工智能(AI)和深度学习(DL)技术为脑肿瘤的自动化诊断带来了曙光。 本研究由Near East University的Efe Precious Onakpojeruo等学者完成,研究成果发表于《Brain Communications》(2024, DOI:10.1093/braincomms/fcae372)。该研究提出了一种基于P...

将人工智能衍生软件在肺结节测量精确度和准确性提高中的潜力转化为对临床实践的影响—模拟研究

基于人工智能软件提升计算机断层扫描中肺结节测量精度的潜在改进对临床实践的影响——模拟研究 背景介绍 肺结节的准确测量对肺癌的检测和管理至关重要。结节尺寸是现有指南中风险分类的主要依据。然而,不同医生手动测量的结果可能存在很大差异。本研究探讨了人工智能(AI)辅助软件在肺结节测量中的潜在改进,以及其与手动测量相比对临床管理的影响。 肺结节是胸部计算机断层扫描(CT)中常见的发现,约95%的肺结节是良性的,但其余的可能是癌性的,需采取进一步行动。肺结节的大小和生长速度与其恶性风险有很强的相关性,因此准确测量肺结节的大小和生长速度是当前肺结节及肺癌诊断和管理路径中的关键要素。 文章来源 本文由Mubarak Patel(MSc)、Peter Auguste(PhD)、Jason Madan(PhD...

颈部转移性淋巴结的自动分割方法:基于纵向MRI的自蒸馏掩码图像transformer

颈部转移性淋巴结的自动分割方法:基于纵向MRI的自蒸馏掩码图像transformer

自蒸馏的掩码图像transformer在纵向MRI中的潜力——自动分割颈部淋巴结转移 报告介绍 在肿瘤放疗中,自动分割技术承诺提升速度并降低手工分割带来的读者间差异。在放射肿瘤学临床实践中,精确快速的肿瘤分割对于患者的个性化治疗至关重要。Ramesh Paudyal等来自Memorial Sloan Kettering Cancer Center的研究人员开展了这一项研究,旨在实现并评估“屏蔽图像变压器”(masked image modeling using vision transformers,即SMIT)算法在口咽部鳞状细胞癌患者的纵向T2加权MRI图像中的颈部淋巴结转移的自动分割精度。 这篇论文发表在《BJR|Artificial Intelligence》2024年第1期。这项研...

单细胞ATAC-Seq数据的基因集合评分算法基准测试

基因集合评分工具对单细胞ATAC-seq数据的基准测试 作者: Xi Wang, Qiwei Lian, Haoyu Dong, Shuo Xu, Yaru Su, Xiaohui Wu 单位: Pasteurien College(苏州大学苏州医学院),厦门大学自动化系,福州大学数学与计算机科学学院 通讯作者: xhwu@suda.edu.cn 期刊: 《Genomics, Proteomics & Bioinformatics》 发布日期: 2024年2月9日(在线公布) 导论 转座酶可及染色质测序(ATAC-seq)是一种强大且常用的表观基因组技术,通过测序分析全基因组范围内的染色质可及性。近来,单细胞ATAC-seq(scATAC-seq)技术使得研究单细胞中的染色质可及性成为可能,...

蛋白质结构预测:挑战、进展与研究范式的转变

蛋白质结构预测:挑战、进展及研究范式的变化 蛋白质结构预测是一个吸引了生物化学、医学、物理学、数学和计算机科学等多个领域研究者的重要跨学科研究课题。研究者们采取了多种研究范式去解决同一个结构预测问题:生物化学家和物理学家试图揭示蛋白质折叠的原理;数学家,尤其是统计学家,通常从假设给定目标序列的蛋白质结构概率分布开始,然后找到最可能的结构;而计算机科学家将蛋白质结构预测视为一个优化问题——寻找具有最低能量的结构构象或最小化预测结构与天然结构之间的差异。最近,深度学习在蛋白质结构预测中也取得了巨大成功。在这篇综述中,本文呈现了一项对蛋白质结构预测努力的调查。我们比较了不同领域研究者采用的研究范式,重点是深度学习时代研究范式的转变。 作者简介及论文出处 本文由Bin Huang, Lupeng K...

集成AI工具通过盲超扫描预测孕龄的诊断准确性

基于盲超声扫描的AI工具估算妊娠年龄的诊断准确性 背景介绍 妊娠年龄(Gestational Age, GA)的准确评估是良好孕期护理的基础,但通常需要通过超声检查实现。然而,许多低资源地区缺乏足够的超声设备,这使得GA的准确评估变得十分困难。近年来,硬件和人工智能(Artificial Intelligence, AI)在医学图像分析中的进步,为广泛使用这一诊断工具提供了契机。本研究基于一个深度学习AI模型,开发了一个低成本、无需高端配置的电池供电设备,旨在评估其在非专业用户手中估算妊娠年龄的准确性。 研究来源 这篇研究由Jeffrey S. A. Stringer, MD及其团队撰写,作者来自于北卡罗来纳大学、赞比亚大学等机构。该研究于2024年8月1日在线发表于《JAMA》。 研究流程...

面部特异性活动与意识性面部感知在腹侧流视觉皮层中的联系

面部特异性活动与意识性面部感知在腹侧流视觉皮层中的联系

面部特异性活动与意识性面部感知的关系探究 引言 面部感知是一种基本的认知过程,使人类能够有效识别环境中的脸部,从而更好地进行社交互动。广泛的研究已在大脑腹侧视觉皮层中识别出一个特定区域,该区域对面部刺激表现出显著的活动增加。然而,这种面部特异性感应是否直接与面部感知(例如,主观感知)相关,仍然不清楚。比较不同感知状态下的神经活动可以直接证明这些信号在意识面部感知中的作用。 本次研究的主要目的是探讨腹侧流视觉皮层中的面部特异性活动是否与意识面部感知相关。为此,研究者们使用了人类颅内脑电图(electrocorticography,ECoG)技术,这提供了对大脑电生理响应的直接测量,同时具有高空间和时间分辨率。通过这种方法,研究者们得以比较被试在“看到了”面部(“seen”条件)和“没有看到”面...