分子天线增强光热光谱法实时检测痕量分析物

分子天线增强光热光谱法实时检测痕量分析物

实时检测痕量分析物的分子天线增强光热光谱技术 学术背景 在环境和安全监测中,实时、高选择性、高灵敏度检测痕量气态化合物是一个重要的挑战。尤其是新兴的环境污染物,如全氟和多氟烷基物质(PFAS),其在大气中的选择性检测需求日益增长。传统的微纳传感器平台虽然在灵敏度上具有潜力,但由于其表面积小、化学选择性差、响应时间长等问题,难以满足实时检测的需求。光热光谱技术结合了中红外光谱的高选择性和微机电系统(MEMS)传感器的高热灵敏度,提供了一种高选择性的检测方法。然而,由于微纳传感器的表面积有限,当环境中的分析物浓度较低时,吸附的分子密度可能低于检测限,导致检测灵敏度不足。 为了解决这些问题,研究者提出了一种新型的实时预浓缩器,结合光热分子天线(Molecular Antenna, MA)技术,能够...

使用自展开薄片的磁驱动胶囊靶向给药

磁驱动胶囊中的自展开片剂用于靶向药物递送 背景介绍 胃肠道(Gastrointestinal, GI)疾病,如炎症性肠病、胃肠道出血和癌症,是全球范围内的重要健康问题。传统的治疗方法,如内窥镜检查和口服药物,虽然在一定程度上有效,但存在许多局限性。例如,内窥镜检查依赖于操作者的技术水平,且难以在单次检查中覆盖整个胃肠道。口服药物则面临药物在胃肠道中降解和吸收受限的问题。 为了解决这些问题,近年来,胶囊内窥镜和药物递送系统得到了广泛关注。然而,现有的胶囊系统在多个病灶的靶向治疗和主动移动能力上仍然存在不足。为此,Lee等人在2025年发表于《Device》期刊上的研究中,提出了一种新型的磁驱动胶囊系统,该系统能够将治疗片(Therapeutic Sheets, TheraS)递送到胃肠道中的特...

深度学习增强的金属有机框架电子皮肤用于健康监测

深度学习增强的金属有机框架电子皮肤在健康监测中的应用 学术背景 电子皮肤(e-skin)是一种能够感知生理和环境刺激的技术,模拟人类皮肤的功能。近年来,电子皮肤在机器人、运动科学和医疗健康监测等领域的应用潜力逐渐显现。然而,当前的电子皮肤技术面临着一些挑战:首先是多功能的实现,即如何在一个设备中同时检测多种生理信号(如生物分子、运动信号等);其次是信号的区分问题,尤其是在同时检测多种刺激时,如何准确区分并识别不同的信号。 传统的多功能电子皮肤通常需要整合多种传感材料,这不仅增加了制造的复杂性,还可能导致设备性能不稳定。此外,现有的电子皮肤在信号的信噪比、灵敏度和稳定性方面也存在不足。因此,开发一种高性能、多功能且易于制造的电子皮肤成为了研究的焦点。 金属有机框架(Metal-Organic ...

微铸3D打印多超材料用于可编程多模态仿生电子学

基于铸型微铸造3D打印的多材料仿生电子器件研究 学术背景 随着仿生电子技术的快速发展,模拟人类感知功能的电子皮肤(Electronic Skin, E-skin)和柔性传感器在机器人、医疗设备和人机交互等领域展现出广阔的应用前景。然而,现有的仿生电子器件在材料选择、结构复杂性和功能集成方面面临诸多挑战。特别是,如何在不破坏材料性能的前提下,实现多种高难度材料的自由组装和多功能集成,成为当前研究的瓶颈。 传统的制造方法,如电纺、光刻和转移印刷,往往难以同时满足材料多样性和复杂结构的需求。3D打印技术虽然为复杂结构的制造提供了可能,但在处理多种高难度材料时,仍然面临材料兼容性、结构分辨率不足等问题。为了解决这些问题,研究人员借鉴了古代失蜡铸造(Lost-wax Casting)的技术思路,提出了...

基于全方位液滴振动采集的漂浮式发电机

基于全方位液滴振动采集的漂浮式发电机

漂浮式全向液滴振动发电器:突破性研究 学术背景 随着物联网(IoT)设备在海洋环境监测中的广泛应用,如何在不依赖电网的情况下为这些设备提供稳定电力成为了一个亟待解决的问题。传统的风力、太阳能等可再生能源在海洋环境中存在局限性,而摩擦电纳米发电机(Triboelectric Nanogenerator, TENG)因其高效的机械能转换能力被认为是一种有潜力的解决方案。然而,现有的TENG设备大多依赖于固体-固体界面摩擦,存在磨损问题,限制了其长期使用。此外,许多液滴基TENG只能单向收集能量,无法适应海洋环境中不可预测的多向波动。 为了解决这些问题,研究团队提出了一种基于液滴的全向振动发电器(Floating Droplet-based Electricity Generator, FDEG)...

ECDformer:高效且可解释的电子圆二色光谱预测的解耦峰值属性学习

高效且可解释的电子圆二色光谱预测:Decoupled Peak Property Learning 学术背景 电子圆二色光谱(Electronic Circular Dichroism, ECD)是研究分子手性的关键工具,特别是在不对称有机合成和药物工业中,用于区分手性分子的绝对构型。然而,现有的ECD光谱预测方法存在两个主要问题:数据稀缺性和可解释性不足,导致预测结果的可信度较低。当前的ECD光谱预测依赖于耗时的量子化学计算,包括分子结构提取、构象搜索、结构优化、时间相关密度泛函理论(TD-DFT)计算和玻尔兹曼加权等步骤。这不仅需要实验化学家具备深厚的专业知识,还耗费大量的计算资源和时间。因此,如何加速ECD光谱的理论计算并提高其预测的准确性和可解释性,成为了一个亟待解决的问题。 论文来...

基于内存计算的深度贝叶斯主动学习研究

随着人工智能(AI)技术的快速发展,深度学习在复杂任务中取得了显著进展。然而,深度学习的成功在很大程度上依赖于大量标注数据,而数据的标注过程不仅耗时、劳动密集,还需要专业的领域知识,成本高昂。特别是在一些专业领域中,如机器人技能学习、催化剂发现、药物发现和蛋白质生产优化等,获取标注数据的难度和成本尤其突出。为了解决这一问题,深度贝叶斯主动学习(Deep Bayesian Active Learning, DBAL)应运而生。DBAL通过主动选择最有信息量的数据进行标注,显著提高了标注效率,从而在有限标注数据的情况下实现高质量的学习。 然而,DBAL的实现面临着一个重要的技术挑战:它需要处理大量的随机变量和高带宽的数据传输,这对传统的确定性硬件提出了极高的要求。传统的互补金属氧化物半导体(Co...

形态优化与形态变换问题的可编程环境

可编程形状优化与形变问题的研究:Morpho环境的开发与应用 学术背景 软材料(soft materials)在科学和工程领域中扮演着至关重要的角色,特别是在软体机器人、结构流体、生物材料与颗粒介质等领域。这些材料在机械、电磁或化学刺激下会发生显著的形状变化。理解并预测这些材料的形状变化,对于优化设计及其背后的物理机理具有重要意义。然而,形状优化问题通常非常复杂,现有的模拟工具要么功能有限,要么不够通用,导致研究人员在处理这类问题时面临诸多挑战。 为了解决这一难题,研究人员开发了一个开源的、可编程的优化环境——Morpho,旨在为形状优化问题提供一个通用且易于使用的工具。Morpho能够处理多种软材料物理问题,如膨胀水凝胶(swelling hydrogels)、复杂流体中的非球形液滴、肥皂...

通过多任务学习接近耦合簇精度的分子电子结构

机器学习助力量子化学:逼近耦合簇精度的分子电子结构预测 学术背景 在物理学、化学和材料科学领域,计算方法是揭示各种物理现象背后机制和加速材料设计的关键工具。然而,量子化学计算(尤其是电子结构计算)通常是计算瓶颈,限制了计算速度和可扩展性。尽管近年来机器学习方法在加速分子动力学模拟和提高精度方面取得显著成功,但现有的机器学习模型大多基于密度泛函理论(DFT)数据库作为训练数据的“真实值”,其预测精度无法超越DFT本身。DFT作为一种平均场理论,其计算通常引入的系统误差比化学精度(1 kcal/mol)大几倍,这限制了基于DFT数据集训练的机器学习模型的整体精度。 相比之下,耦合簇方法(CCSD(T))被认为是量子化学的“金标准”,能够提供各种分子性质的高精度预测。然而,CCSD(T)的计算成本...

DeepBlock:通过深度学习进行毒性控制的理性配体生成方法

深度学习应用于目标蛋白配体生成的最新研究:DeepBlock框架的提出与验证 背景与研究问题 药物发现过程中,寻找能够结合特定蛋白的配体分子(ligand)一直是核心目标。然而,目前的虚拟筛选方法(virtual screening)通常受限于化合物库的规模和化学空间的广度,难以在大规模化学空间中发现符合目标特性的创新化合物。相比之下,去新药设计(de novo drug design)通过从头生成分子结构,为探索现有化合物库之外的化学空间提供了崭新的可能性。 近年来,深度生成模型(deep generative models)在化学分子生成领域取得了显著进展,包括自回归模型(autoregressive models)、变分自编码器(variational autoencoders, VA...