Réseau de convolution graphique guidé par la similarité à l'auto-attention pour la recherche sur la classification des gliomes de bas grade de plusieurs types

Réseau de convolution graphique guidé par la similarité à l'auto-attention pour la recherche sur la classification des gliomes de bas grade de plusieurs types

Réseau de Convolution Graphique Guidé par la Similarité Auto-attention pour la Classification des Gliomes de Bas Grade Multitypes I. Contexte de la Recherche Les gliomes de bas grade sont une forme courante de tumeur cérébrale maligne, causée par la transformation cancérogène des cellules gliales dans le cerveau et la moelle épinière. Ils se caract...

Prédiction de la Maladie des Gliomes : Une Approche Optimisée Basée sur l'Apprentissage Automatique en Ensemble

Prédiction de la maladie du gliome basée sur une machine à apprendre intégrée optimisée Contexte et objectifs de la recherche Dans la recherche médicale, les gliomes sont les tumeurs cérébrales primaires les plus communes, regroupant plusieurs types de cancer avec différents comportements cliniques et résultats thérapeutiques. Une prédiction précis...

Autoencodeur Variationnel Désentrelacé Multimodal avec Interprétabilité Théorique pour la Classification des Gliomes

Application du Variational Autoencoder Démêlant Multimodal et de l’Interprétabilité Basée sur la Théorie des Jeux dans la Classification des Gliomes Introduction Dans le système nerveux central, les gliomes sont les tumeurs cérébrales primaires les plus courantes. Selon les activités cellulaires et le degré d’invasion, l’Organisation Mondiale de la...

Apprentissage multitâche entièrement automatisé basé sur l'IRM multimodale pour la segmentation des gliomes et le génotypage IDH

Apprentissage multitâche entièrement automatisé basé sur l'IRM multimodale pour la segmentation des gliomes et le génotypage IDH

Rapport de recherche sur l’apprentissage multitâche entièrement automatique basé sur l’IRM multimodal pour la segmentation des gliomes et la classification du gène IDH Contexte de la recherche Les gliomes sont les tumeurs cérébrales primitives les plus courantes du système nerveux central. Selon la classification de l’Organisation Mondiale de la Sa...

Un Cadre CNN Guidé par l'Attention pour la Segmentation et la Classification du Gliome à l'Aide de Scans IRM 3D

Cadre CNN guidé par l’attention pour l’étude de segmentation et de classification des gliomes dans les scans IRM 3D Les gliomes sont les formes de tumeurs cérébrales les plus mortelles chez l’homme. Un diagnostic rapide de ces tumeurs est une étape importante pour un traitement efficace des tumeurs. L’imagerie par résonance magnétique (IRM) offre g...

CaNet: Réseau sensible au contexte pour la segmentation du gliome cérébral

CaNet: Réseau sensible au contexte pour la segmentation du gliome cérébral

Rapport d’étude sur le réseau sensible au contexte pour la segmentation des gliomes cérébraux Les gliomes cérébraux sont un type de tumeur cérébrale adulte courante, qui nuit gravement à la santé et présente un taux de mortalité élevé. Pour fournir des preuves suffisantes pour le diagnostic précoce, la planification chirurgicale et l’observation po...

Renforcer le pronostic des gliomes avec l'apprentissage automatique transparent et des informations interprétatives en utilisant l'IA explicable

Utilisation de l’apprentissage automatique transparent et des perspectives explicatives pour autonomiser l’intelligence artificielle explicable dans le pronostic des gliomes Contexte académique Cette étude vise à développer une technique fiable pour détecter si des patients souffrent d’un type spécifique de tumeur cérébrale — gliome — en utilisant ...

Tomographie moléculaire par fluorescence basée sur la priorisation de la parcimonie de groupe pour la reconstruction morphologique du gliome

Rapport de recherche sur l’imagerie tomographique moléculaire par fluorescence basée sur une priorité de la parcimonie en groupe pour la reconstruction morphologique de gliome I. Contexte académique et motivation de la recherche L’imagerie tomographique moléculaire par fluorescence (Fluorescence Molecular Tomography, FMT) est un outil important des...

Analyse de la survie des gliomes enrichie par l'ingénierie des données—Une enquête

Étude de l’analyse de survie chez les patients atteints de gliome: Une revue habilitée par l’ingénierie des données Introduction Le gliome est une tumeur qui se développe dans les cellules gliales, représentant 26,7 % de toutes les tumeurs primaires du cerveau et du système nerveux central. En raison de l’hétérogénéité de la tumeur, l’analyse de la...

Apprentissage profond du phénotype d'imagerie et du génotype pour prédire le temps de survie global des patients atteints de glioblastome

Apprentissage profond du phénotype d'imagerie et du génotype pour prédire le temps de survie global des patients atteints de glioblastome

Dans le monde entier, le glioblastome (Glioblastoma, GBM) est la tumeur cérébrale maligne la plus courante et la plus mortelle. Ces dernières années, des études ont tenté de prédire la survie globale (Overall Survival, OS) des patients atteints de GBM en utilisant des techniques d’apprentissage automatique basées sur les phénotypes d’imagerie unimo...