The Design of Ternary Nanofibers with Core–Shell Structure for Electromagnetic Stealthy Antenna

The Design of Ternary Nanofibers with Core–Shell Structure for Electromagnetic Stealthy Antenna

Academic Background In the information age, the widespread application of electromagnetic waves (EMW) has led to breakthroughs in various fields such as communication, healthcare, and navigation. However, with the proliferation of electronic devices, electromagnetic interference (EMI) issues have become increasingly severe, not only affecting the n...

Gait Sensors with Customized Protruding Structures for Quadruped Robot Applications

Gait Sensors with Customized Protruding Structures for Quadruped Robot Applications

Research on Flexible Gait Sensors for Quadruped Robot Applications Background Introduction With the widespread application of robots in daily life and industrial production, especially in scenarios requiring standardized, persistent, and heavy-duty operations, the development of intelligent robots has gradually become a trend. However, robots still...

Enhancing Passive Cavitation Imaging Using Pth Root Compression Delay, Sum, and Integrate Beamforming: In Vitro and In Vivo Studies

Application of pth Root Compression Delay, Sum and Integrate Beamforming in Passive Cavitation Imaging Academic Background Passive Cavitation Imaging (PCI) is a technique used to monitor bubble activity during ultrasound therapy, widely applied in treatment scenarios such as drug delivery and tissue ablation (e.g., Histotripsy). However, existing P...

Design, Fabrication and Test of a Lightweight 3.0 T Cryogen-Free MRI System

Design and Testing of a Lightweight 3.0 T Cryogen-Free MRI System Academic Background Magnetic Resonance Imaging (MRI), as a non-invasive, radiation-free imaging technology, has been widely used in medical diagnostics and scientific research. Especially in the fields of small animal studies and material analysis, high-field MRI systems can provide ...

Passive Beamforming Metasurfaces for Microwave-Induced Thermoacoustic Imaging

Passive Beamforming Metasurfaces for Microwave-Induced Thermoacoustic Imaging Academic Background Microwave-induced thermoacoustic imaging (MTAI) is an emerging medical imaging technology that combines the advantages of microwave and ultrasound imaging. It generates ultrasonic waves (i.e., thermoacoustic signals) by irradiating biological tissues w...

Accelerated Simulation of Multi-Electrode Arrays Using Sparse and Low-Rank Matrix Techniques

Accelerating Multi-Electrode Array Simulation with Sparse and Low-Rank Matrix Techniques Academic Background Multi-electrode arrays (MEAs) play a crucial role in the field of neural stimulation, particularly in neural prosthetics such as retinal prostheses. These devices restore vision or treat neurodegenerative diseases by electrically stimulating...

Unsupervised Accuracy Estimation for Brain-Computer Interfaces Based on Selective Auditory Attention Decoding

Unsupervised Accuracy Estimation for Brain-Computer Interfaces Based on Selective Auditory Attention Decoding Academic Background In complex auditory environments, humans can selectively focus on a specific sound source while ignoring other interfering sounds—a phenomenon known as the “cocktail party effect.” Selective Auditory Attention Decoding (...

Interdisciplinary Advances in Microcombs: Bridging Physics and Information Technology

Interdisciplinary Advances in Microcomb Technology: Bridging Physics and Information Technology Academic Background The optical frequency comb (OFC) is a technology that divides the optical frequency domain into a series of discrete, equally spaced frequency lines. It has been widely used in precision measurements, optical communications, atomic cl...

A Large Field-of-View, Single-Cell-Resolution Two- and Three-Photon Microscope for Deep and Wide Imaging

A Large Field-of-View, Single-Cell-Resolution Two- and Three-Photon Microscope for Deep and Wide Imaging

Large field-of-view, single-cell-resolution two- and three-photon microscope for deep and wide imaging Research Background and Problem Statement Multiphoton microscopy (MPM) is a powerful tool for deep tissue imaging, especially in the study of brain function in vivo. However, while traditional two-photon microscopy (2PM) can achieve a larger imagi...

Wide-Band High-Performance Optical Modulator Based on a Stack of Graphene and h-BN Layers

Research on High-Performance Wideband Optical Modulators: Innovative Design Based on Stacked Graphene and Hexagonal Boron Nitride Structures Research Background and Problem Statement With the rapid development of optical communication technology, electro-optic modulators play a crucial role in modern telecommunication systems. However, achieving hi...