GCLink:遺伝子調節ネットワーク推論のためのグラフコントラストリンク予測フレームワーク

研究背景 遺伝子制御ネットワーク(Gene Regulatory Networks, GRNs)は、細胞内の複雑な生物学的プロセスを理解するための重要なツールです。それは転写因子(Transcription Factors, TFs)と標的遺伝子間の相互作用を明らかにし、遺伝子の転写プロセスを制御し、細胞の挙動を調節します。単細胞RNAシークエンシング(single-cell RNA-sequencing, scRNA-seq)技術の発展により、研究者は単細胞解像度で遺伝子発現データを取得できるようになり、これがGRNsの推論に前例のない機会を提供しています。しかし、scRNA-seqデータのスパース性と高い変動性は、GRNsの推論に大きな課題をもたらしています。 現存のGRN推論手法は主に...

共有ペプチドを用いたプロテオミクス実験におけるタンパク質および翻訳後修飾の相対定量:重みベースのアプローチ

プロテオミクス研究において、質量分析(Mass Spectrometry, MS)はタンパク質の豊度や構造変化を分析するために広く使用されています。しかし、タンパク質の定量分析には重要な課題があります。多くのタンパク質が同じペプチド(shared peptides)を共有しているため、これらのペプチドが複数のタンパク質配列に現れることがあります。従来の方法は通常、ユニークペプチド(unique peptides)のみに依存してタンパク質を定量しており、共有ペプチドの情報を無視しているため、定量結果に偏りや不正確さが生じる可能性があります。特に、タンパク質アイソフォーム(protein isoforms)や翻訳後修飾(post-translational modifications, PTMs...

遺伝子発現ダイナミクスの軌道整合

単一細胞トランスクリプトームシーケンシング(single-cell RNA sequencing, scRNA-seq)技術の登場により、細胞の発生と分化過程における遺伝子発現のダイナミクスをこれまでにない解像度で研究することが可能になりました。しかし、生物学的プロセスの複雑さから、異なる条件下での細胞発生軌跡はしばしば非対称であり、データの統合と比較に課題をもたらしています。既存の方法は通常、異なる条件下のサンプルを統合してからクラスタリング分析を行ったり、共有される軌跡を推測したりすることを前提としていますが、これらの方法は非対称な軌跡を扱う際に効果的ではなく、重要な差異発現遺伝子(differentially expressed genes, DEGs)を見逃す可能性があります。 この...

単細胞RNAシーケンスデータの空間再構築のための対照的マッピング学習

単細胞RNAシーケンス(scRNA-seq)技術は、単細胞解像度で高スループットなトランスクリプトーム解析を可能にし、細胞生物学の研究を大きく進展させました。しかし、scRNA-seq技術の重要な制約は、組織を解離する必要があるため、細胞の組織内における元の空間位置情報が失われることです。空間トランスクリプトミクス(Spatial Transcriptomics, ST)技術は、正確な空間遺伝子発現マップを提供できますが、遺伝子検出数、コスト、細胞タイプ注釈の細かさにおいて制限があります。そのため、scRNA-seqデータに空間情報を復元する方法は、現在の研究における重要な課題となっています。 この問題を解決するため、研究者たちは、scRNA-seqとSTデータの間で知識を転送する「細胞対応...

集団規模ゲノムシーケンス研究における効率的なストレージと回帰計算

大規模人口バイオバンクの普及に伴い、全ゲノムシーケンシング(Whole Genome Sequencing, WGS)データは、人間の健康と疾患研究においてその潜在能力を大幅に向上させています。しかし、WGSデータの膨大な計算とストレージ要件は、特に資金不足の機関や発展途上国の研究者にとって大きな課題となっています。このような資源配分の不平等は、最先端の遺伝学研究の公平性を制限しています。この問題を解決するために、Manuel A. RivasとChristopher Changらは、WGS研究の計算時間とストレージ要件を大幅に削減する新しいアルゴリズムと回帰手法を開発し、特に稀な変異の処理に焦点を当てました。 論文の出典 この論文は、Manuel A. RivasとChristopher ...

共有ユニットとマルチチャネル注意メカニズムを用いたcircRNAと疾患の関連性の予測

背景紹介 近年、環状RNA(circRNA)は新たな非コードRNA分子として、疾患の発生、進行、治療において重要な役割を果たしています。circRNAは独特の環状構造を持ち、ヌクレアーゼによる分解を受けにくいため、潜在的なバイオマーカーや治療標的として注目されています。しかし、実験的手法を用いてcircRNAと疾患の関連を研究するには時間とコストがかかり、関連研究の進展を妨げています。この問題を解決するため、研究者たちはバイオインフォマティクス手法を用いてcircRNAと疾患の関連を予測する計算モデルの開発に取り組んでおり、実験研究の指針を提供しています。 多視点学習手法はcircRNAと疾患の関連予測に広く用いられていますが、既存の手法は異なる視点間の潜在的な情報を十分に活用できておらず、...

ACImpute: 制約を強化した平滑化ベースの単一細胞RNAシーケンスデータの補完手法

単細胞RNAシーケンシング(single-cell RNA sequencing, scRNA-seq)技術は、近年、生物学および医学研究において広く応用されています。この技術は、個々の細胞のトランスクリプトーム情報を明らかにし、科学者が細胞の異質性と複雑性をより深く理解するのに役立ちます。しかし、scRNA-seqデータには「ドロップアウトイベント」(dropout events)という普遍的な問題が存在します。これらのイベントにより、多くの遺伝子が単一細胞内でゼロ値として記録されます。これらのゼロ値は2つのカテゴリーに分類されます。1つは「生物学的ゼロ」(biological zeros)で、遺伝子がその細胞内で実際に発現していないことを示します。もう1つは「技術的ゼロ」(technic...

SP-DTI:サブポケット情報を利用したTransformerモデルによる薬物-標的相互作用予測

学術的背景 薬物-ターゲット相互作用(Drug-Target Interaction, DTI)の予測は、薬物発見における重要なプロセスであり、実験スクリーニングのコストと時間を大幅に削減することができます。しかし、深層学習技術がDTI予測の精度を向上させたにもかかわらず、既存の方法は依然として2つの大きな課題に直面しています:汎化能力の不足とサブポケットレベルの相互作用の無視です。まず、既存のモデルは未知のタンパク質やクロスドメイン設定において性能が著しく低下します。次に、現在の分子関係学習は、サブポケットレベルの相互作用をしばしば無視しており、これらの相互作用は結合部位の詳細を理解する上で重要です。これらの課題を解決するために、研究者はSP-DTIという新しいモデルを提案し、サブポケット...

サブスペース強化ハイパーグラフニューラルネットワークを用いた不安障害の識別とバイオマーカー検出

サブスペース強化ハイパーグラフニューラルネットワークを用いた不安障害の識別とバイオマーカー検出

サブスペース強化ハイパーグラフニューラルネットワークを用いた不安障害の識別とバイオマーカー検出研究 学術的背景 不安障害(Anxiety Disorders, ADs)は世界的に一般的なメンタルヘルスの問題であり、約7.3%の人口に影響を及ぼしています。不安障害の患者は通常、過度の恐怖、心配、および関連する行動異常を示し、これらの症状は患者の社会的機能と生活の質に深刻な影響を与え、家族や社会に大きな負担をかけます。不安障害は、全般性不安障害(Generalized Anxiety Disorder, GAD)、社交不安障害(Social Anxiety Disorder, SAD)、パニック障害(Panic Disorder, PD)、特定の恐怖症(Specific Phobia, SP)な...

注入可能短繊維による細胞検査点介入の抑制による神経細胞老化の逆転

背景紹介 脊髄損傷(Spinal Cord Injury, SCI)は、現代医学が直面する大きな課題の一つであり、特に神経機能の回復が重要です。研究によると、ニューロンは脊髄の再生において重要な役割を果たしますが、複雑な病理環境の中で、ニューロンはさまざまな要因の影響を受け、急速に老化状態に陥ります。老化した神経細胞は増殖能力を失うだけでなく、老化関連分泌表現型(Senescence-Associated Secretory Phenotype, SASP)を分泌して周囲の細胞を老化状態に誘導し、悪循環を形成し、さらに局所組織の退化を悪化させます。既存の治療法である老化細胞を除去するsenolytic療法は、短期的な症状緩和には有効ですが、細胞老化の根本的な問題を解決することはできません。そ...