物理的知識を取り入れた深層学習による筋骨格モデル化:表面EMGから筋力と関節運動学の予測

肌骨モデルは、生体力学解析に広く利用されており、直接計測が困難な運動変数(例:筋力や関節モーメント)を推定することができます。従来の物理駆動の計算肌骨モデルは、神経駆動から筋肉、筋肉の動力学、および身体と関節の運動学と動力学の間の動的相互作用を説明することができます。しかし、これらのモデルはその複雑さのため、動作速度が遅く、リアルタイムアプリケーションの実現が難しいです。近年、データ駆動方式はその実現速度の速さと操作の簡単さから有望な代替手段となっていますが、基礎的な神経機械プロセスを反映することができません。 本研究では、物理学の知識を融合した深層学習フレームワークを提案し、筋骨モデリングを実現します。このフレームワークでは、物理分野の知識をデータ駆動モデルに導入し、ソフト制約として罰則/...

生のEEGを用いたリアルタイム視覚学習者識別のためのディープラーニングベースの評価モデル

在今日の教育環境において、学生の学習スタイルを理解することは、彼らの学習効率を向上させるために極めて重要です。特に視覚学習スタイル(visual learning style)の識別は、教師と学生が教育と学習の過程でより効果的な戦略を取るのに役立ちます。現在、視覚学習スタイルを自動的に識別する主な方法は、脳波(Electroencephalogram, EEG)と機械学習技術に依存しています。しかし、これらの技術は通常、アーティファクトの除去および特徴抽出のためにオフライン処理が必要であり、そのためリアルタイムでの適用が制限されています。 この研究は、Soyiba Jawed、Ibrahima Faye、およびAamir Saeed Malikが《IEEE Transactions on N...

経皮的脊髄刺激が脊髄損傷後の手と腕の機能を回復させる

経皮的脊髄刺激が脊髄損傷後の手と腕の機能を回復させる

脊髄損傷(Spinal Cord Injury, SCI)による上肢麻痺は、患者の独立性と生活の質に大きな影響を与えます。SCIの患者群体において、手や腕の動作制御の回復は最も優先される治療目標とされており、この要求は歩行能力の回復よりもはるかに高いです。しかし、現時点での上肢機能を改善する臨床的方法は、独立した生活を取り戻す効果には至っていません。従来の運動療法や機能的電気刺激(Functional Electrical Stimulation, FES)、体感刺激(Somatosensory Stimulation)および経頭蓋磁気刺激(Transcranial Magnetic Stimulation, TMS)などの方法は、運動機能の向上において効果が限られています。 近年の研究によ...

運動イメージ解読のための多特徴注意畳み込みニューラルネットワーク

脑機インターフェース(Brain-Computer Interface, BCI)は、神経系と外部環境を接続するコミュニケーション手段です。運動イメージ(Motor Imagery, MI)はBCI研究の基礎であり、運動実行前の内的リハーサル(Internal Rehearsal)を指します。非侵襲性技術である脳波(Electroencephalography, EEG)は、そのコスト効率と利便性のため、高い時間分解能で神経活動を記録することができます。被験者が特定の身体部位を移動することをイメージすると、大脳の特定領域でエネルギー変化(ERD/ERS)が発生し、これらの変化はEEGにより記録され運動意図を識別するために使用されます。MIに基づくBCIシステムは大きな進展を遂げており、外骨格...

トランスフォーマーベースのアプローチによるディープラーニングネットワークと時空間情報を組み合わせた生EEG分類

研究背景及目的 近年では、脳-コンピュータインタフェース(Brain-Computer Interface、BCI)システムが神経工学および神経科学の分野で広く応用され、脳波(Electroencephalogram、EEG)は中枢神経系の異なるニューロン集団の活動を反映するデータツールとして、これらの分野で重要な研究テーマとなっています。しかし、EEG信号は低空間分解能、高時間分解能、低信号対雑音比、および個体差が大きいという特徴があり、信号処理および正確な分類において大きな課題となっています。特に運動想像(Motor Imagery、MI)というEEG-BCIシステムの一般的なパラダイムにおいて、異なるMIタスクのEEG信号を正確に分類することは、BCIシステムの機能回復およびリハビリテ...

EMG駆動ロボットハンドトレーニングによる慢性脳卒中における半球間バランス回復の神経メカニズムの解明:動的因果モデルの洞察

EMG駆動ロボットハンドトレーニングによる慢性脳卒中における半球間バランス回復の神経メカニズムの解明:動的因果モデルの洞察

EMG駆動のロボットハンドトレーニングが慢性脳卒中患者の半球間バランスの回復に与える神経メカニズム:動的因果モデリングによる洞察 脳卒中は一般的な障害の原因であり、多くの脳卒中生存者は上肢麻痺を患います。上肢機能の障害は6ヶ月以上続くことが多く、完全回復する生存者は少数(12%未満)です。これらの患者の日常生活能力を回復させ、生活の質を向上させるために、研究者たちは脳卒中後のリハビリプランの開発に取り組んでいます。 近年、ロボット補助装置を使用した上肢のリハビリに関する研究が広く注目を集めています。ロボットリハビリは一貫性のある、集中的かつインタラクティブなトレーニング体験を提供し、患者の積極的な参加を促します。総合的な分析では、ロボット補助トレーニングを受けた個体は上肢のFugl-Meye...

ウェーブレットベースの時間-スペクトル-注意相関係数による運動想像EEG分類

脑機インターフェース(Brain-Computer Interface, BCI)技術は近年急速に発展しており、末梢神経や筋肉を介さず、大脳を直接制御する先端技術として注目されています。特に運動イメージ(Motor Imagery, MI)脳波(Electroencephalography, EEG)の応用において、BCI技術は大きな可能性を示しています。MI-EEG信号を分析することで、身体障害や神経筋退化の患者の生活の質を向上させる手助けが可能です。しかし、個人間の差異や大脳活動の安定性、低信号雑音比(Signal-to-Noise Ratio, SNR)などの要因により、複雑なEEG信号から有効な特徴を抽出し、MI-EEG分類システムの精度を向上させることは依然として大きな課題となって...

ADFCNN:運動イメージ脳コンピュータインターフェースのための注意ベースの二重スケール融合畳み込みニューラルネットワーク

ADFCNN:運動イメージ脳コンピュータインターフェースのための注意ベースの二重スケール融合畳み込みニューラルネットワーク

ブレイン・コンピュータ・インターフェース(Brain-Computer Interface, BCI)は、新たなコミュニケーションと制御技術として近年注目を集めている。脳波(EEG)に基づくBCIの中でも、運動イメージ(Motor Imagery, MI)は重要な分野であり、ユーザーの運動意図をデコードすることで、臨床リハビリテーション、スマート車椅子の制御、およびカーソル制御などの分野に応用されている。しかしながら、EEG信号の低い信号対雑音比(Signal-to-Noise Ratio, SNR)、非定常性、低い空間分解能および高い時間分解能などの複雑な特性のため、運動意図の正確なデコードには依然として挑戦が残っている。現在のMI基BCIデコードには主に伝統的な機械学習と深層学習の手法が...

正常発達児における皮質感覚ネットワークの時空間ダイナミクス

典型発達児童の体性感覚皮質ネットワークの時空間動態 研究背景 触覚は、外界の物体との相互作用および手の動作の精密なコントロールにおいて極めて重要な役割を果たしています。人間の皮膚感覚情報処理メカニズムに関する多くの研究が存在する一方で、この過程に参与する脳領域間の動的な相互作用については未だ不明瞭です。これまでの研究は皮膚感覚情報フローの時間動態を探る際に一貫しない結果を報告していました。したがって、本研究は磁源イメージングと皮質-皮質結合動態分析を用いて、典型発達児童の皮膚感覚処理の時空間動態を探ることを目的としています。 論文出典 本論文はYanlong Song、Sadra Shahdadian他多数の著者によって共同執筆され、著者らはFort WorthのNeuroscience R...

フレキシブルな多チャンネルOPMベースのMEGシステムで人間の聴覚誘発電場を測定

フレキシブルな多チャンネルOPMベースのMEGシステムで人間の聴覚誘発電場を測定

柔軟な多チャンネル光ポンピング磁力計MEGシステムを用いた人間の聴覚誘発場の測定 Xin Zhangら、中国科学院蘇州生物医学工学技術研究所、中国科学技術大学、中国広東省仏山市季華実験室および山東省済南市国科医療技術発展有限公司出身の研究者が、2024年に《j. integr. neurosci.》に発表した研究論文です。 背景 磁気脳図(Magnetoencephalography, MEG)は、外部磁場を直接測定する非侵襲的なイメージング技術で、同期して活性化された大脳の錐体神経細胞が生成するものです。光ポンピング磁力計(Optically Pumped Magnetometer, OPM)は、その低コスト、低温不要、可搬性およびユーザーフレンドリーなカスタム設計により、MEGに基づく機...