Neuronal population activity in the olivocerebellum encodes the frequency of essential tremor in mice and patients

Encoding of Cerebellar-Olivary Neuronal Ensemble Activity for Tremor Frequency in Mice and Patients with Essential Tremor Research Background Essential Tremor (ET) is a common movement disorder characterized primarily by action tremor, affecting about 20% of the elderly population. The frequency and intensity of tremor are core features of ET. Howe...

Closed-loop Optogenetic Neuromodulation Enables High-Fidelity Fatigue-Resistant Muscle Control

Closed-loop Optogenetic Neuromodulation Enables High-Fidelity Fatigue-Resistant Muscle Control

High-Fidelity Fatigue-Resistant Muscle Control Through Closed-Loop Optogenetic Neural Modulation Background Introduction Skeletal muscle is the biological actuator for almost all movements in animals and humans. However, under various neurological conditions, the communication pathways between the central nervous system and neuromuscular components...

Simultaneous, Cortex-Wide Dynamics of Up to 1 Million Neurons Reveal Unbounded Scaling of Dimensionality with Neuron Number

Simultaneously Recording Up to a Million Neurons’ Cortical Dynamics Reveals Unbounded Scaling of Neuronal Quantity and Dimensionality Summary This scientific report titled “Simultaneously Recording Up to a Million Neurons’ Cortical Dynamics Reveals Unbounded Scaling of Neuronal Quantity and Dimensionality,” published in the journal Neuron (Volume 1...

Functional Ultrasound Imaging of the Human Spinal Cord

Application of Functional Ultrasound Imaging in the Study of the Human Spinal Cord Background Introduction The spinal cord is an important center for sensory and motor integration in the nervous system, responsible for monitoring the kinematics and posture of various body parts. Interruption of spinal cord information flow due to injury or disease ...

A Magnetic Particle Imaging Approach for Minimally Invasive Imaging and Sensing with Implantable Bioelectronic Circuits

Minimally Invasive Imaging and Sensing Methods Based on Magnetic Particle Imaging and the Application of Implanted Electronic Circuits Academic Background In modern medicine, minimally invasive and biocompatible implantable bioelectronics are widely used for long-term monitoring of physiological processes inside the body. However, methods for imagi...

Exploration of Coincidence Detection of Cascade Photons to Enhance Preclinical Multi-Radionuclide SPECT Imaging

Exploration of Coincidence Detection of Cascade Photons to Enhance Preclinical Multi-Radionuclide SPECT Imaging

Exploration of Coincidence Detection of Cascade Photons to Improve Multi-Nuclide SPECT Imaging Radiopharmaceutical Therapy (RPT) has garnered increasing interest in recent years, especially in SPECT imaging involving the simultaneous use of multiple tracers. Traditional imaging methods are prone to scattering and crosstalk from different energy γ-r...

Whole Reconstruction-Free System Design for Direct Positron Emission Imaging from Image Generation to Attenuation Correction

Whole Reconstruction-Free System Design for Direct Positron Emission Imaging from Image Generation to Attenuation Correction

Background Introduction A hundred years ago, Hevesy first proposed using radioactive tracers as biological markers in plants, later validated through experiments in rats. This discovery propelled the development of nuclear medicine and molecular imaging in the biomedical field, making it possible to quantitatively visualize biological processes at ...

Joint B0 and Image Reconstruction in Low-Field MRI by Physics-Informed Deep-Learning

Joint B0 and Image Reconstruction in Low-Field MRI by Physics-Informed Deep-Learning

Low-Field MRI Image Reconstruction Using Physics-Informed Deep Learning Background: The application of magnetic resonance imaging (MRI) technology in low-field magnetic resonance imaging has gained increasing attention in recent years. Low-field MRI, due to its low cost and simplified maintenance, is considered to have a broad application prospect ...

Characterization of Human Shoulder Joint Stiffness Across 3D Arm Postures and Its Sex Differences

Characterization of Human Shoulder Joint Stiffness Across 3D Arm Postures and Its Sex Differences

Three-Dimensional Postural Characteristics and Gender Differences in Human Shoulder Joint Stiffness Research Background The shoulder joint is one of the most complex joints in the human structure. Its stability is crucial for the effective control of arm movement, including the natural control of distal joints like the elbow and wrist, as well as f...

Remote Gait Analysis Using Ultra-Wideband Radar Technology

Remote Gait Analysis Using Ultra-Wideband Radar Technology

Remote Gait Analysis Using Ultra-Wideband Radar Technology Research Background Gait analysis, the study of the coordinated biomechanical patterns of human walking, is not only a critical component of biomechanics research but also provides valuable information on health status. In recent years, there has been a growing interest in developing new at...