EISATC-Fusion: Fusion du réseau de convolution temporelle à auto-attention inception pour le décodage EEG de l'imagerie motrice

EISATC-Fusion: Fusion du réseau de convolution temporelle à auto-attention inception pour le décodage EEG de l'imagerie motrice

Contexte de la recherche La technologie d’interface cerveau-ordinateur (brain-computer interface, BCI) permet une communication directe entre le cerveau et les dispositifs externes. Elle est largement utilisée dans des domaines tels que l’interaction homme-machine, la rééducation motrice et la médecine. Les paradigmes courants de BCI incluent le po...

Découverte des mécanismes neuronaux de la restauration de l'équilibre inter-hémisphérique dans les AVC chroniques grâce à la rééducation de la main par un robot piloté par EMG : Perspectives de la modélisation causale dynamique

Découverte des mécanismes neuronaux de la restauration de l'équilibre inter-hémisphérique dans les AVC chroniques grâce à la rééducation de la main par un robot piloté par EMG : Perspectives de la modélisation causale dynamique

Découvrir les mécanismes neurologiques de la récupération de l’équilibre interhémisphérique chez les patients AVC chroniques grâce à l’entraînement de la main robotique pilotée par EMG : Aperçus du modèle causal dynamique L’AVC est une cause fréquente de handicap, avec la majorité des survivants souffrant de paralysie du membre supérieur. Les consé...

Coefficient de corrélation temporelle-spectrale d'attention basé sur les ondelettes pour la classification EEG d'imagination motrice

Interface Cerveau-Machine (Brain-Computer Interface, BCI) : Développements et Applications en Imagerie Motrice EEG L’interface cerveau-machine (Brain-Computer Interface, BCI) a progressé rapidement ces dernières années et est considérée comme une technologie de pointe permettant de contrôler des dispositifs externes directement par le cerveau, sans...

Une approche d'apprentissage profond basée sur l'attention pour la classification des stades du sommeil avec EEG monocanal

L’électronique IEEE (Institut des ingénieurs électriques et électroniques) a publié dans le volume 29 de “Transactions on Neural Systems and Rehabilitation Engineering” de 2021 un article intitulé “A Single-Channel EEG Sleep Stage Classification Method Based on Attention Deep Learning”. Cet article a été rédigé par les chercheurs Emadeldeen Edele, ...

Réseau d'apprentissage de la structure du graphe guidé par l'attention pour la détection de l'attention auditive activée par EEG

Réseau d'apprentissage de la structure du graphe guidé par l'attention pour la détection de l'attention auditive activée par EEG

Application du réseau d’apprentissage de structure de graphe guidée par l’attention pour la détection de l’attention auditive basée sur l’EEG Contexte académique L’«effet cocktail party» décrit la capacité du cerveau humain à se concentrer sélectivement sur un locuteur et à ignorer les autres dans un environnement multi-locuteurs. Cependant, cette ...

Faisabilité de la stimulation endovasculaire du nerf fémoral à l'aide d'un réseau d'électrodes monté sur un stent

Faisabilité de la stimulation neurovasculaire du nerf fémoral par une électrode en grillage déployée dans l’artère fémorale Ces dernières années, la stimulation électrique des nerfs périphériques en tant que traitement pour restaurer les fonctions nerveuses endommagées a progressivement suscité l’attention. Les réseaux d’électrodes traditionnels né...

Les changements dans les réseaux fonctionnels du cerveau induits par une tâche d'intégration visuomotrice

Réorganisation des réseaux cérébraux dans les tâches visuomotrices Contexte de recherche L’exécution du mouvement est une fonction cognitive complexe qui dépend de l’activation coordonnée de régions cérébrales spatialement proches et éloignées. Les tâches d’intégration visuomotrice nécessitent le traitement et l’interprétation des entrées visuelles...

GCTNet : un réseau de transformateur de convolution en graphes pour la détection des troubles dépressifs majeurs à partir des signaux EEG

GCTNet:Réseau de Transformateurs à Convolution de Graphe pour la Détection de la Dépression Majeure Basée sur des Signaux EEG Contexte de la Recherche La dépression majeure (Major Depressive Disorder, MDD) est une maladie mentale courante caractérisée par des humeurs dépressives significatives et persistantes, touchant plus de 350 millions de perso...

Topologie des signaux d'électromyogrammes de surface: Décodage des gestes de la main sur les variétés riemanniennes

Structure topologique des signaux EMG de surface : Décodage des gestes de la main en utilisant les variétés riemanniennes Cet article a été rédigé conjointement par Harshavardhana T. Gowda (Département de génie électrique et informatique de l’Université de Californie, Davis) et Lee M. Miller (Centre de sciences psychologiques et cérébrales, Départe...

Une interface cerveau-ordinateur visuelle conviviale basée sur des champs visuels évoqués à l'état stable de fréquence élevée enregistrés par OPM-MEG

Une interface cerveau-ordinateur visuelle conviviale basée sur des champs visuels évoqués à l'état stable de fréquence élevée enregistrés par OPM-MEG

Interface Cerveau-Ordinateur Basée sur le Champ Visuel à Fréquence Élevée Évoqué par Stimulation Visuelle Stable Introduction La technologie des Interfaces Cerveau-Ordinateur (Brain-Computer Interface, BCI) permet aux utilisateurs de contrôler des machines en décodant des signaux cérébraux spécifiques. Bien que les BCI invasives captent des signaux...