Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces and Joint Kinematics from Surface EMG

Musculoskeletal models have been widely used in biomechanical analysis because they can estimate motion variables that are difficult to measure directly in living organisms, such as muscle forces and joint moments. Traditional physics-driven computational musculoskeletal models can explain the dynamic interactions between neural inputs to muscles, ...

Deep Learning-Based Assessment Model for Real-Time Identification of Visual Learners Using Raw EEG

In the current educational environment, understanding students’ learning styles is crucial for improving their learning efficiency. Specifically, the identification of visual learning styles can help teachers and students adopt more effective strategies in the teaching and learning process. Currently, automatic identification of visual learning sty...

Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury

Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury

Spinal Cord Injury (SCI) resulting in upper limb paralysis significantly impacts patients’ independence and quality of life. Among the SCI patient population, regaining control over hand and arm movements is considered the highest priority treatment goal, surpassing even the restoration of walking ability. However, current clinical methods to impro...

Multi-Feature Attention Convolutional Neural Network for Motor Imagery Decoding

Brain-Computer Interface (BCI) is a communication method that connects the nervous system to the external environment. Motor Imagery (MI) is the cornerstone of BCI research, referring to the internal rehearsal before physical execution. Non-invasive techniques such as Electroencephalography (EEG) can record neural activities with high temporal reso...

A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification

Research Background and Objectives In recent years, Brain-Computer Interface (BCI) systems have been widely applied in the fields of neuroengineering and neuroscience. Electroencephalogram (EEG), as a data tool reflecting the activities of different neuronal groups in the central nervous system, has become a core research topic in these fields. How...

Uncovering the Neural Mechanisms of Inter-Hemispheric Balance Restoration in Chronic Stroke through EMG-Driven Robot Hand Training: Insights from Dynamic Causal Modeling

Uncovering the Neural Mechanisms of Inter-Hemispheric Balance Restoration in Chronic Stroke through EMG-Driven Robot Hand Training: Insights from Dynamic Causal Modeling

Revealing the Neuromechanism of Interhemispheric Balance Restoration in Chronic Stroke Patients through EMG-driven Robot Hand Training: Insights from Dynamic Causal Modeling Stroke is a common cause of disability, with most stroke survivors suffering from upper limb paralysis. The consequences of upper limb functional impairment can persist for ove...

Wavelet-Based Temporal-Spectral-Attention Correlation Coefficient for Motor Imagery EEG Classification

Brain-Computer Interface (BCI) technology has rapidly developed in recent years and is considered a cutting-edge technology that allows external devices to be controlled directly by the brain without the need for peripheral nerves and muscles. Particularly in the application of Motor Imagery Electroencephalography (MI-EEG), BCI technology has shown...

ADFCNN: Attention-Based Dual-Scale Fusion Convolutional Neural Network for Motor Imagery Brain–Computer Interface

ADFCNN: Attention-Based Dual-Scale Fusion Convolutional Neural Network for Motor Imagery Brain–Computer Interface

Brain-Computer Interface (BCI) has emerged as an enhanced communication and control technology in recent years. In BCI based on electrophysiological characteristics (such as Electroencephalogram, EEG), Motor Imagery (MI) is an important branch that decodes users’ motor intentions for use in clinical rehabilitation, intelligent wheelchair control, c...

Spatiotemporal Dynamics of Cortical Somatosensory Network in Typically Developing Children

Temporal and Spatial Dynamics of Somatosensory Cortex Network in Typically Developing Children Research Background Touch plays a crucial role in our interaction with external objects and the fine control of hand movements. Despite substantial research on the mechanisms of sensory information processing in human skin, it remains unclear how brain re...

Measuring Human Auditory Evoked Fields with a Flexible Multi-Channel OPM-Based MEG System

Measuring Human Auditory Evoked Fields with a Flexible Multi-Channel OPM-Based MEG System

Measurement of Human Auditory Evoked Fields Using a Flexible Multichannel Optically Pumped Magnetometer MEG System Xin Zhang and others, from the Suzhou Institute of Biomedical Engineering and Technology of the Chinese Academy of Sciences, University of Science and Technology of China, Jihua Laboratory in Foshan, Guangdong Province, and Guoke Medic...