Réseau d'exploration et de fusion de caractéristiques multi-niveaux pour la prédiction du statut IDH dans les gliomes à partir de l'IRM

Exploration et Fusion de Caractéristiques Multi-Niveaux pour la Prédiction de l’État IDH sur les IRM Contexte de l’étude Les gliomes sont les tumeurs cérébrales primaires malignes les plus courantes chez les adultes. Selon la classification des tumeurs de l’Organisation mondiale de la santé (OMS) en 2021, le génotype joue un rôle crucial dans la so...

Estimation de Distribution Basée sur le Flux Normalisant des Paramètres Pharmacocinétiques dans l'Imagerie par Résonance Magnétique Dynamique Améliorée par Contraste

Dans le diagnostic médical moderne et la recherche clinique, la technique d’imagerie par résonance magnétique dynamique avec contraste (Dynamic Contrast-Enhanced Magnetic Resonance Imaging, DCE-MRI) fournit des informations importantes sur l’histopathologie des tissus. En ajustant le modèle Tracer-Kinetic (TK), on peut extraire les paramètres pharm...

Un cadre d'adaptation de domaine de transport siamois pour la classification IRM 3D des gliomes et des maladies d'Alzheimer

Classification des Gliomes et de la Maladie d’Alzheimer sur des IRM 3D Basée sur le Cadre d’Adaptation de Domaine Siamese-Transport Contexte de l’Étude Dans le diagnostic assisté par ordinateur, le dépistage des images par résonance magnétique (IRM) 3D joue un rôle crucial dans le diagnostic précoce de diverses maladies cérébrales, permettant de pr...

Transformateurs de vision, modèle d'ensemble et apprentissage par transfert utilisant l'IA explicable pour la détection et la classification des tumeurs cérébrales

En raison de la forte incidence et de la létalité des tumeurs cérébrales, il est devenu particulièrement important de détecter et de classifier rapidement et précisément les tumeurs cérébrales. Les tumeurs cérébrales incluent des types malins et non malins, et leur croissance anormale peut causer des dommages à long terme au cerveau. L’imagerie par...

Évaluation de la valeur prédictive des modèles de croissance des gliomes pour les gliomes de bas grade après résection tumorale

Étude sur la valeur prédictive des modèles de croissance des gliomes de bas grade après chirurgie Introduction Les gliomes sont des tumeurs cérébrales invasives qui peuvent se propager rapidement dans le cerveau. Comprendre et prédire les modes et les vitesses de cette propagation peut aider à optimiser les traitements. Les modèles de croissance de...

Apprentissage profond informé par la physique pour la modélisation musculo-squelettique: Prédire les forces musculaires et la cinématique des articulations à partir de l'EMG de surface

Les modèles musculosquelettiques ont été largement utilisés pour les analyses biomécaniques car ils peuvent estimer des variables de mouvement difficiles à mesurer directement in vivo (comme les forces musculaires et les moments articulaires). Les modèles musculosquelettiques entraînés de manière traditionnelle par des processus physiques peuvent e...

Découverte des mécanismes neuronaux de la restauration de l'équilibre inter-hémisphérique dans les AVC chroniques grâce à la rééducation de la main par un robot piloté par EMG : Perspectives de la modélisation causale dynamique

Découverte des mécanismes neuronaux de la restauration de l'équilibre inter-hémisphérique dans les AVC chroniques grâce à la rééducation de la main par un robot piloté par EMG : Perspectives de la modélisation causale dynamique

Découvrir les mécanismes neurologiques de la récupération de l’équilibre interhémisphérique chez les patients AVC chroniques grâce à l’entraînement de la main robotique pilotée par EMG : Aperçus du modèle causal dynamique L’AVC est une cause fréquente de handicap, avec la majorité des survivants souffrant de paralysie du membre supérieur. Les consé...

Coefficient de corrélation temporelle-spectrale d'attention basé sur les ondelettes pour la classification EEG d'imagination motrice

Interface Cerveau-Machine (Brain-Computer Interface, BCI) : Développements et Applications en Imagerie Motrice EEG L’interface cerveau-machine (Brain-Computer Interface, BCI) a progressé rapidement ces dernières années et est considérée comme une technologie de pointe permettant de contrôler des dispositifs externes directement par le cerveau, sans...

Patterns de micro-état oscillatoire dérivés de la magnétoencéphalographie à travers la durée de vie : la cohorte du Cambridge Centre for Ageing and Neuroscience

Application de la magnétoencéphalographie (MEG) pour analyser les changements des modèles de micro-états oscillatoires du cerveau entier tout au long de la vie: Une étude de cohorte du Cambridge Centre for Ageing and Neuroscience Contexte de la recherche Avec le vieillissement de la population devenant un problème de plus en plus grave, il est esse...

La signature neurophysiologique corticale de la sclérose latérale amyotrophique

Analyse des caractéristiques neurophysiologiques corticales de la SLA et étude du potentiel des biomarqueurs Contexte La Sclérose Latérale Amyotrophique (SLA), également connue sous le nom de maladie de Charcot, est une maladie neurodégénérative survenant chez l’adulte, caractérisée par une perte progressive de l’intégrité des systèmes moteurs du c...