Amélioration de la détection d'objets aériens avec un réseau d'interaction de fréquence sélective

Amélioration de la Détection d’Objets Aériens avec le Réseau d’Interaction Sélective de Domaine Fréquentiel Contexte de l’Étude et Problèmes Posés Avec l’évolution des technologies de vision par ordinateur, la détection d’objets aériens est devenue un domaine de recherche essentiel en télédétection. Ce processus vise à identifier des cibles telles ...

RADIFF : Modèles de diffusion contrôlables pour la génération de cartes astronomiques radio

RaDiff : Des modèles de diffusion contrôlables pour la génération de cartes astronomiques radio Introduction Avec l’achèvement imminent du Square Kilometer Array (SKA), le domaine de la radioastronomie s’apprête à connaître des avancées révolutionnaires dans l’exploration de l’univers. Le SKA, par ses niveaux sans précédent de sensibilité et de rés...

Adaptation de domaine non supervisée sur les nuages de points via la modélisation de structures géométriques d'ordre supérieur

Rapport d’une étude basée sur le Modélisation des structures géométriques d’ordre supérieur dans l’adaptation de domaine non supervisée pour les nuages de points Contexte et motivations de la recherche Les nuages de points constituent une forme fondamentale de données tridimensionnelles, très utilisée dans des applications réelles comme la conduite...

AugDiff : Augmentation de caractéristiques basée sur la diffusion pour l'apprentissage multi-instances dans les images de lame entière

Augmentation Basée sur les Modèles de Diffusion : Une Nouvelle Approche pour l’Apprentissage Multi-Instances sur des Images Entières en Pathologie Contexte Scientifique et Motivation Dans le domaine de la pathologie computationnelle (computational pathology), l’analyse efficace des images entières de lames histopathologiques (Whole Slide Images, WS...

Détection de communautés dirigées d'ordre supérieur par un cadre évolutif multiobjectif

Détection dirigée de communautés d’ordre supérieur par un cadre évolutif multiobjectif Contexte et motivation de la recherche Dans le domaine de la science des réseaux complexes, la structure communautaire est l’une des caractéristiques essentielles des recherches sur les réseaux. Ces structures sont omniprésentes dans de nombreux réseaux réels, te...

Sélection de caractéristiques rentable pour l'apprentissage fédéré horizontal

Nouvelle méthode de sélection de caractéristiques efficace pour l’apprentissage horizontal fédéré Fond de recherche L’apprentissage fédéré horizontal (Horizontal Federated Learning, HFL) est une approche émergente dans l’apprentissage automatique distribué visant à protéger la confidentialité des données. Dans le cadre du HFL, chaque client partage...

Apprentissage sans modèle interne versus apprentissage avec récompenses externes dans des environnements à information limitée

Analyse d’une publication scientifique : Comparaison entre apprentissage sans modèle propre et apprentissage avec récompenses externes dans des environnements à contraintes d’information Contexte & Motivation Les systèmes cyber-physiques (Cyber-Physical Systems, CPS) sont largement utilisés dans des domaines clés tels que les véhicules autonomes, l...

Génération et détection d'attaques d'évasion par injection de fausses données adverses dans les réseaux électriques intelligents basées sur des graphes spatio-temporels

Génération et détection d’attaques d’injection de fausses données adversariales dans les réseaux intelligents à l’aide de graphes spatio-temporels Contexte et Introduction Les réseaux intelligents modernes, en tant que systèmes cyber-physiques (Cyber-Physical Systems, CPS), sont vulnérables aux cyberattaques en raison de leur interconnexion et du v...

Adaptation partielle de domaine pour la construction d'un modèle de lithologie de forage sous un a priori géologique plus faible

Sujet et problématique étudiés L’identification lithologique joue un rôle essentiel dans l’analyse des caractéristiques stratigraphiques et l’exploration pétrolière et gazière. Cependant, les méthodes d’identification basées sur l’intelligence artificielle (IA) et l’apprentissage automatique rencontrent des défis majeurs lorsqu’elles sont utilisées...

Système d'apprentissage large sensible aux coûts basé sur un noyau simplifié pour le diagnostic de défauts déséquilibrés

Titre de l’article Système simplifié d’apprentissage large sensible au coût basé sur le noyau pour le diagnostic de pannes déséquilibré Contexte et Importance Avec l’avènement de l’industrie 4.0, l’analyse des mégadonnées industrielles joue un rôle crucial dans la production intelligente. En exploitant les informations pertinentes des données, il e...