ディープラーニングモデルによるセマンティック飽和のメカニズムの解明
ディープラーニングモデルが意味飽和メカニズムを解明 意味飽和(semantic satiation)は、ある単語やフレーズが何度も繰り返されることでその意味が失われる現象であり、よく知られた心理学的現象です。しかし、このメカニズムを引き起こす微視的な神経計算の原理は依然として未知です。本稿では、連続結合ニューラルネットワーク(continuous coupled neural network, CCNN)を使用してディープラーニングモデルを構築し、意味飽和のメカニズムを研究し、ニューロンの成分でこのプロセスを正確に記述します。研究結果は、中観的な視点から見ると、意味飽和は自下から上へのプロセスである可能性があり、既存のマクロな心理学研究が意味飽和を自上から下へのプロセスと見なしているのとは異...