Senescent Myoblasts Exhibit an Altered Exometabolome Linked to Senescence-Associated Secretory Phenotype Signaling

Research Report on Changes in the Metabolome of Senescent Myoblasts Research Background As age increases, the function of skeletal muscle gradually deteriorates, a phenomenon closely related to the senescence of muscle stem cells (satellite cells). Satellite cells play a key role in muscle injury repair. However, during the aging process, the funct...

Sulforaphane Treatment Mimics Contractile Activity-Induced Mitochondrial Adaptations in Muscle Myotubes

Sulforaphane Mimics Contractile Activity-Induced Mitochondrial Adaptations in Muscle Research Background Mitochondria are central regulators of skeletal muscle health, acting as the cell’s power plants. The function and quality of mitochondria directly impact muscle health. Exercise has been widely proven to be an effective means of enhancing mitoc...

RFC4 Confers Radioresistance of Esophagus Squamous Cell Carcinoma through Regulating DNA Damage Response

New Discovery in the Mechanism of Radioresistance in Esophageal Squamous Cell Carcinoma: The Role of the RFC4 Gene Academic Background Esophageal squamous cell carcinoma (ESCC) is one of the most common gastrointestinal malignancies in China, and radiotherapy is a crucial treatment modality. However, radioresistance in tumor cells is a major cause ...

METTL14 Promotes Ferroptosis in Smooth Muscle Cells During Thoracic Aortic Aneurysm by Stabilizing the m6A Modification of ACSL4

Mettl14 Promotes Ferroptosis in Vascular Smooth Muscle Cells During Thoracic Aortic Aneurysm by Stabilizing the m6A Modification of ACSL4 Academic Background Thoracic aortic aneurysm (TAA) is a severe vascular disease that often leads to aortic rupture and acute dissection, with extremely high mortality rates. Currently, the primary treatment for T...

Bone Marrow-Derived NGFR-Positive Dendritic Cells Regulate Arterial Remodeling

Bone Marrow-Derived NGFR+ Dendritic Cells Regulate Arterial Remodeling Background Introduction Atherosclerosis is the primary pathological basis of cardiovascular disease, and its incidence continues to rise globally. Although extensive research has revealed the pathogenesis of atherosclerosis and led to the development of various therapeutic drugs...

Syntaxin 4-enhanced plasma membrane repair is independent of dysferlin in skeletal muscle

Syntaxin 4-Enhanced Plasma Membrane Repair is Independent of Dysferlin in Skeletal Muscle Background Introduction Plasma membrane repair (PMR) is a crucial process for cells to maintain membrane integrity, preventing cell death, especially in vital organs such as skeletal muscle. Dysferlin, a sarcolemmal calcium-binding protein, has been shown to p...

p300 maintains primordial follicle activation by repressing VEGFA transcription

Mechanism Study of p300 Maintaining Primordial Follicle Activation by Inhibiting VEGFA Transcription Academic Background In the female reproductive system, primordial follicles (PFs) are the earliest formed follicles in the ovary, remaining dormant and awaiting activation to enter the growth phase. The activation of primordial follicles is a key fa...

Identification of Polycystin 2 Missense Mutants Targeted for Endoplasmic Reticulum-Associated Degradation

Identification of Polycystin 2 Missense Mutants Targeted for Endoplasmic Reticulum-Associated Degradation Academic Background Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disorder that ultimately leads to end-stage renal disease. ADPKD primarily arises from mutations in the PKD1 and PKD2 genes, which encode Polycystin 1 ...

Brain Pericytes and Perivascular Fibroblasts Are Stromal Progenitors with Dual Functions in Cerebrovascular Regeneration After Stroke

Dual Functions of Pericytes and Perivascular Fibroblasts in Cerebrovascular Regeneration After Stroke Academic Background Stroke is one of the leading causes of death and disability worldwide. Current therapeutic interventions are mostly limited to acute thrombolytic treatment or thrombectomy, followed by long-term rehabilitation. However, the long...

Separating Cognitive and Motor Processes in the Behaving Mouse

Separating Cognitive and Motor Processes: A Breakthrough in Mouse Behavioral Research Academic Background In the study of animal behavior, cognitive processes and motor processes are often closely intertwined. For example, when a mouse explores its environment, its facial expressions or active sampling behaviors not only reflect movement but are al...