A Novel CNN-Based Image Segmentation Pipeline for Individualized Feline Spinal Cord Stimulation Modeling

Automated Spinal Cord Segmentation Pipeline Based on Convolutional Neural Network (CNN) for Individualized Cat Spinal Cord Stimulation Modeling Background and Research Motivation Spinal cord stimulation (SCS) is a widely used treatment method for chronic pain management. In recent years, it has also been used to modulate neural activity, aiming to ...

Feasibility of Endovascular Stimulation of the Femoral Nerve Using a Stent-Mounted Electrode Array

Feasibility of Intravascular Femoral Nerve Stimulation using a Stent Electrode Array In recent years, electrical stimulation of peripheral nerves has gained attention as a potential therapeutic approach for restoring impaired nerve function. Traditional electrode arrays typically require invasive surgical implantation, which imposes a significant b...

Bayesian Estimation of Group Event-Related Potential Components: Testing a Model for Synthetic and Real Datasets

Background Introduction The study of Event-Related Potentials (ERPs) provides important information about brain mechanisms, particularly in elucidating various psychological processes. In these studies, multi-channel electroencephalograms (EEGs) are typically recorded while subjects perform specific tasks, and the trials are categorized based on st...

Neuritogenic Glycosaminoglycan Hydrogels Promote Functional Recovery After Severe Traumatic Brain Injury

Neuritogenic Glycosaminoglycan Hydrogels Promote Functional Recovery After Severe Traumatic Brain Injury Traumatic brain injury (TBI) is a serious neurological disorder, and the complexity of its treatment has long plagued the medical community. TBI not only leads to immediate loss of neurological function in patients, but also causes long-term tis...

Neuronal Functional Connectivity is Impaired in a Layer-dependent Manner Near Chronically Implanted Intracortical Microelectrodes in C57BL/6 Wildtype Mice

Layer-Dependent Effects of Chronic Neural Electrode Implants on Neural Functional Connectivity in Mice Introduction This study explores the long-term effects of chronically implanted microelectrodes on neural functional connectivity within the brains of C57BL6 wild-type mice. Implanted intracerebral electrodes enable the recording and electrical st...

Topology of Surface Electromyogram Signals: Hand Gesture Decoding on Riemannian Manifolds

Topology of Surface Electromyography Signals: Decoding Hand Gestures Using Riemannian Manifolds This paper is authored by Harshavardhana T. Gowda (Department of Electrical and Computer Engineering, University of California, Davis) and Lee M. Miller (Center for Mind and Brain Sciences, Department of Neurophysiology and Behavior, Department of Otolar...

Influence of Peripheral Axon Geometry and Local Anatomy on Magnetostimulation Chronaxie

Influence of Peripheral Nerve Geometry and Local Anatomy on Magnetic Stimulation Time Constant Background Introduction Rapidly switching magnetic resonance imaging (MRI) gradient fields produce sufficiently strong electric fields within the human body, leading to peripheral nerve stimulation (PNS), which limits improvements in imaging speed and res...

Preparatory Movement State Enhances Premovement EEG Representations for Brain-Computer Interfaces

EEG of Pre-movement Phase Aids Brain-Computer Interface (BCI) in Recognizing Movement Intentions Background and Research Objectives Brain-Computer Interface (BCI) is a technology that translates human intentions directly through neural signals to control devices, holding extensive application prospects [1]. BCI has the potential to revolutionize va...

Single-Session Cross-Frequency Bifocal tACS Modulates Visual Motion Network Activity in Young Healthy Population and Stroke Patients

Report on Single-Session Cross-Frequency Dual-Focus tACS Modulation of Visuomotor Network Activity in Healthy Young Adults and Stroke Patients Academic Background and Research Significance In neuroscience research, neural oscillations play a crucial role in regulating communication within and between brain regions. Long-distance phase synchronizati...

A User-Friendly Visual Brain-Computer Interface Based on High-Frequency Steady-State Visual Evoked Fields Recorded by OPM-MEG

A User-Friendly Visual Brain-Computer Interface Based on High-Frequency Steady-State Visual Evoked Fields Recorded by OPM-MEG

Visual Brain-Computer Interface Based on High-Frequency Steady-State Visual Evoked Fields Background Brain-Computer Interface (BCI) technology allows users to control machines by decoding specific brain activity signals. While invasive BCIs excel in capturing high-quality brain signals, their application is mainly limited to clinical settings. Non-...