精神的健康が健康的な老化に与える因果的効果に関するメンデルのランダム化証拠

科学研究報告:メンタルヘルスが健康な老化に与える因果効果 研究背景 人間の平均寿命が顕著に伸びるにつれて、高齢化の問題がますます顕在化しています。人々は共存病(comorbidity)や障害、医療サービスや財政の安定性に関する社会全体の挑戦に直面し、その重要性が日に日に高まっています。顕著に延長された寿命のもとで良好な健康状態を保持すること、つまり健康な老化を実現することは、解決が急がれる課題となっています。心理的な健康(メンタルウェルビーイング)は、多様な生活習慣や疾患において重要な役割を果たすと考えられており、健康な老化の鍵となる要素です。いくつかの調査やコホート研究は、心理的な健康と理想的な身体の健康、より良い機能能力、または生存率の増加との間に関連があることを発見していますが、観察研...

情動計算のための生理データ: Affect-HRIデータセット

生理データを用いた擬人化サービスロボットとの人間-ロボットインタラクションにおける応用:Affect-HRIデータセット 背景と研究の意義 人間同士または人間とロボットの相互作用において、相互作用の対象は人間の情感状態に影響を与えます。人間とは異なり、ロボットは本質的に共感を示すことができないため、不利な情感反応を和らげることができません。責任感があり共感性の高い人間-ロボットインタラクションシステムを構築するためには、特に擬人化サービスロボットが関わる場合、ロボットの行動が人間の情感にどのように影響するかを理解する必要があります。これを目的として、研究者たちは新たな包括的データセットAffect-HRIを提供しました。これは、人間の情感(即ち、感情と気分)がラベル付けされた生理データを初め...

KG4NH:食事栄養と人間の健康に関する質問応答のための包括的な知識グラフ

背景と研究の動機 周知の通り、食物の栄養と人間の健康は密接に関連しています。科学的研究によると、食事の栄養が不適切であることは200種類以上の病気と関連しており、特に腸内フローラの代謝を考慮した場合、食物の栄養成分と病気との間の複雑な相互作用は体系化と実際の応用が困難です。そのため、包括的な知識を統合し実用的な枠組みを提供することが急務であり、飲食関連のクエリ取得をサポートする必要があります。 研究の出典 本稿はChengcheng Fu、Xueli Pan、Jieyu Wu、Junkai Cai、Zhisheng Huang、Frank Van Harmelen、Weizhong Zhao、Xingpeng Jiang、そしてTingting Heが共同で執筆した研究に基づいています。この...

時間的知識グラフと医療オントロジーによる将来の障害の予測

未来の病気予測:時間的知識グラフと医療オントロジーの融合 電子健康記録(Electronic Health Records, EHRs)は、現代の医療機関にとって不可欠なツールです。これらは患者の詳細な健康履歴を記録し、人口統計データ、薬物、実験結果、治療計画を含んでいます。これらのデータは、医療サービス間の連携や調整を改善し、医療提供者が健康の傾向を発見し、データに基づいた決定を下すのを助け、患者の全体的なケアの質を向上させることができます。しかし、EHRsに保存されているデータの大部分は非構造化であり、特に臨床医が記述する自由形式の患者健康状態のテキストデータは、情報の抽出と有効な利用に大きな課題をもたらします。 この課題に対処するため、多くの研究が自然言語処理(Natural Lang...

二重レベル相互作用認識異種グラフニューラルネットワークによる薬包推奨

医学パッケージ推薦システムの研究:二層次の相互作用意識に基づく異種グラフニューラルネットワーク 電子健康記録(EHRs)が医療分野で広く利用される中、それらから潜在的かつ価値のある医療知識を掘り起こし、臨床決定を支援する方法がディープラーニング技術の重要な研究方向の一つとなっています。個別化医療パッケージ推薦はこの分野の重要なタスクの一つであり、大量の医療記録を利用して各患者に最も安全かつ効果的な薬剤パッケージを選択することを目指しています。しかし、既存の医療パッケージ推薦方法は主にタスクを多ラベル分類またはシーケンス生成問題としてモデリングしており、主に個々の薬剤と他の医療エンティティとの関係に焦点を当てているため、薬剤パッケージと他の医療エンティティとの相互作用を見過ごしがちであり、推薦...

知識強化型グラフトピック変換機による説明可能な生物医学テキスト要約

知識強化型グラフトピック変圧器の説明可能な生物医学テキスト要約への応用 研究背景 生物医学の文献発表量が増加し続けているため、自動生物医学テキスト要約タスクの重要性が高まっています。2021年にはPubMedデータベースだけで1,767,637本の論文が発表されました。既存の事前学習言語モデル(Pre-trained Language Models、PLMs)を用いた要約方法は性能を向上させていますが、特定の分野の知識の捕捉や結果の説明可能性において顕著な制限があります。これにより、生成された要約が一貫性に欠け、冗長な文章や重要な分野知識の欠落を含む可能性があります。さらに、変圧器モデルのブラックボックス特性はユーザーが要約生成の理由や方法を理解するのを困難にするため、生物医学テキスト要約に...

複数の先行知識を持つグラフニューラルネットワークによるマルチオミクスデータ分析

複数の先行知識を持つグラフニューラルネットワークによるマルチオミクスデータ分析

医学多組学データ分析における多重先験知識グラフニューラルネットワーク 背景紹介 精密医療は将来の医療保健において重要な分野であり、患者に個別化された治療計画を提供することにより、治療効果を改善しコストを削減します。例えば、乳がん患者の複雑な臨床、病理、および分子特性を考えると、同じ治療が異なる効果を示すことがあります。バイオ医学技術の急速な発展に伴い、多組学データを通じて疾病の特性化が可能になっています。多組学アプローチは単一組学アプローチに比べて、複数のデータ間で一貫性と補完的な情報を捉えることができ、より正確かつ深くモデルを構築することができます。例えば、がんゲノム図譜(The Cancer Genome Atlas, TCGA)は、mRNA 発現、DNA メチル化、およびコピー数変異(...

非独立同分布データを用いた多中心疾患診断のためのモデル投影による連合学習

非独立同分布データを用いた多中心疾患診断のためのモデル投影による連合学習

モデルプロジェクションを使用したフェデレーテッドラーニングによる多センター疾病診断 背景紹介 医療画像技術の急速な発展に伴い、自動化診断方法の研究は単一センターデータセットで良好な性能を示しています。しかし、これらの方法は実際の応用では他の医療機関のデータに一般化しにくいことが多いです。主な理由は、これらの方法が異なる医療センターのデータを独立同分布(IID)と仮定しているが、実際には異なるセンターが異なるスキャナーや画像パラメータを使用しているため、データ分布が非独立同分布(Non-IID)であることです。さらに、異なるセンターで診断される患者の数や種類にも大きな差があります。したがって、多センターのデータは異質性を持ち、集中化学習(Centralized Learning)では効果的に解...

電子健康記録の署名により、診断されていない一般的な可変免疫不全症の患者を特定

電子健康記録の署名により、診断されていない一般的な可変免疫不全症の患者を特定

未診断の一般的な亜型免疫不全症患者の識別における電子健康記録特徴の利用 Johnsonらは最近、Science Translational Medicineに「Electronic health record signatures identify undiagnosed patients with common variable immunodeficiency disease」というタイトルの研究論文を発表しました。この研究は、電子健康記録(EHR)と機械学習アルゴリズムPheneTを用いて、未診断の一般可変免疫不全病(common variable immunodeficiency, CVID)患者を識別し、より早期の診断と治療の新たな方法を提供するものです。 研究背景と研究目的 ヒト...

ストローククラシファイア:電子健康記録を使用したアンサンブルコンセンサスモデリングによる虚血性脳卒中病因の分類

StrokeClassifier:人工知能ツールは電子健康記録に基づいて虚血性脳卒中を病因別に分類 プロジェクト背景および研究動機 脳卒中(特に急性虚血性脳卒中、AIS)の病因識別は二次予防において極めて重要ですが、その診断は非常に困難です。アメリカでは毎年約67.6万件の新たな虚血性脳卒中のケースが報告され、そのうち4分の1の患者は過去に脳卒中の経験があります。この病状は再発率が高く、時には死亡やさらなる障害を引き起こすこともあります。虚血性脳卒中の病因は、大動脈粥状硬化、心源性塞栓症、小血管病、その他の稀な原因など多岐にわたります。しかし、アメリカでは約20-30%の虚血性脳卒中患者が評価を受けてもなお病因が確定せず、隠源性脳卒中として分類されます。この部分の患者は再発脳卒中のリスクが特...