Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis

Comprehensive Characterization and Transcriptome Analysis of Terminal Erythropoiesis in Human Fetal Liver Background and Research Question Erythropoiesis is the process of red blood cell production. Initially, “primitive” erythropoiesis occurs in the yolk sac, gradually replaced by “terminal” erythropoiesis in the fetal liver (FL) and postnatal bon...

Decoding Human Biology and Disease Using Single-Cell Omics Technologies

Decoding Human Biology and Disease with Single-Cell Omics Technologies Background Introduction Cells are the fundamental units of life. A single fertilized egg can develop into an entire complex human body, composed of approximately 37 trillion cells organized into various tissues, organs, and systems. Traditional cell classification methods primar...

TM7SF3 Controls TEAD1 Splicing to Prevent MASH-Induced Liver Fibrosis

Background Introduction In modern society, metabolic dysfunction-associated steatotic liver disease (MASLD, previously NAFLD) is a common and serious chronic liver disease. However, the current understanding of its pathological mechanisms is not complete, including its progression to metabolic dysfunction-associated steatohepatitis (MASH), liver fi...

Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule

Role of GLP-1R in T Cells and Its Regulatory Mechanism for Anti-transplant Immunity and Anti-tumor Immunity Academic Background Glucagon-like peptide-1 receptor (GLP-1R) is known as a key regulator of glucose metabolism, primarily expressed in pancreatic β cells. Previous studies have clarified that GLP-1R agonists have significant effects in reduc...

QDPR Deficiency Drives Immune Suppression in Pancreatic Cancer

Background Pancreatic Ductal Adenocarcinoma (PDAC) is a malignancy with a highly immunosuppressive tumor microenvironment (TME), showing strong resistance to immune checkpoint blockade (ICB) therapies, such as anti-PD-1 and anti-CTLA-4 treatments. Myeloid-Derived Suppressor Cells (MDSCs) derived from tumors play a critical role in tumor immune supp...

Acetyl-CoA Carboxylase Obstructs CD8+ T Cell Lipid Utilization in the Tumor Microenvironment

Inhibition of Acetyl-CoA Carboxylase Enhances Antitumor Immunity of Tumor-Infiltrating CD8+ T Cells Background and Objective In recent years, the impact of metabolic changes in the Tumor Microenvironment (TME) on the function of Tumor-Infiltrating Lymphocytes (TILs) has become a hot topic in immunological research. Although T cells possess strong a...

TH17 Cell-Intrinsic Glutathione/Mitochondrial-IL-22 Axis Protects Against Intestinal Inflammation

Intrinsic Glutathione/Mitochondrial-IL-22 Axis in TH17 Cells and Its Protective Mechanism Against Intestinal Inflammation Background Introduction A large amount of reactive oxygen species (ROS) is generated in the intestine, and the role of T-cell antioxidant mechanisms in maintaining intestinal homeostasis remains unclear. This paper studies the i...

Reactive Oxygen Species Regulation by NCF1 Governs Ferroptosis Susceptibility of Kupffer Cells to MASH

NCF1 Regulates Reactive Oxygen Species Vulnerability to Ferroptosis in Kupffer Cells and Its Impact on MASH Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), has a global prevalence of up to 25.2% and is a leading cause of chronic liver disease in adults and c...

Intermittent clearance of p21-highly-expressing cells extends lifespan and confers sustained benefits to health and physical function

Intermittent Clearance of High p21-Expressing Cells Extends Lifespan and Delivers Sustained Health Benefits Research Background With the significant extension of human lifespan, the global elderly population is rapidly increasing. Elderly individuals often face decreased functionality and various chronic diseases in their later years, such as cardi...

Nicotinamide Metabolism Face-off Between Macrophages and Fibroblasts Manipulates the Microenvironment in Gastric Cancer

Macroscopic and Microscopic Mechanisms of Nicotinamide Metabolism Antagonism: Manipulation of the Gastric Cancer Microenvironment Background Introduction Gastric cancer (GC) is a type of cancer characterized by a unique and heterogeneous tumor microenvironment (TME). Despite advances in immune checkpoint blockade (ICB) therapy for gastric cancer, n...