基于心电图的机器学习算法在全人群水平进行心血管疾病的诊断和验证
基于心电图的大规模心血管诊断机器学习算法的开发与验证 引言 心血管疾病(Cardiovascular diseases,CV)一直是全球范围内疾病负担的主要来源,早期诊断和干预对降低疾病并发症、医疗使用率和费用至关重要。传统的心电图(Electrocardiogram,ECG)作为一种低成本且便捷的诊断工具,广泛应用于心血管疾病的检测。然而,现有的ECG解释技术(包括人工和计算机算法)在识别高层次信号互动及“隐藏”的临床相关模式方面存在局限。人工智能(Artificial Intelligence,AI)尤其是深度学习(Deep Learning,DL)的出现,提供了识别ECG信号中“隐藏”模式并同时评估多种心血管疾病的复杂互动关系的全新契机。本研究正是基于这一背景展开。 论文来源与作者 本...